Changes in Soil Phosphorus from Manure Application

2003 ◽  
Vol 67 (2) ◽  
pp. 645 ◽  
Author(s):  
T. S. Griffin ◽  
C. W. Honeycutt ◽  
Z. He
2003 ◽  
Vol 67 (2) ◽  
pp. 645-653 ◽  
Author(s):  
T. S. Griffin ◽  
C. W. Honeycutt ◽  
Z. He

2009 ◽  
Author(s):  
Roger A Eigenberg ◽  
Bryan L Woodbury ◽  
Richard Ferguson ◽  
John A Nienaber ◽  
Mindy J Spiehs

Author(s):  
Sérgio Walace Bousfield ◽  
Nerilde Favaretto ◽  
Antônio Carlos Vargas Motta ◽  
Gabriel Barth ◽  
Luana Salete Celante ◽  
...  

Soil Science ◽  
2017 ◽  
pp. 1 ◽  
Author(s):  
Stephen J. Crittenden ◽  
Quirine M. Ketterings ◽  
Julia Knight ◽  
Karl J. Czymmek

1995 ◽  
Vol 75 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Thi Sen Tran ◽  
Adrien N’dayegamiye

Long-term application of cattle manure and fertilizer can affect the forms and availability of soil phosphorus. This cumulative effect was evaluated on Le Bras silt loam (Humic Gleysol) cultivated with silage corn (Zea mays L.). In this long-term trial, treatments were arranged in a split-plot design, with dairy cattle manure applied at 0 and 20 Mg ha−1 as the main factor. The subplots consisted of six fertilizer treatments (NK, PK, NP, NPK, NPKMg and the unfertilized check). Fertilizer rates for silage corn were 150, 100, 150 and 40 kg ha−1 N, P205, K20 and Mg, respectively. The N fertilizer rate was reduced to 100 kg N ha−1 in manured plots. Soil inorganic P (Pi) and organic P (Po) fractions were sequentially extracted by resin, NaHCO3, NaOH, HCl and a final H2SO4 wet digestion of the residue. On average, labile P extracted by resin and NaHCO3 represented 17% of the total P (Pt); moderately labile NaOH-Pi and Po more than 40%; and stable P 36%. Application of manure and fertilizers increased significantly resin-, NaHCO3-, NaOH-Pi and Pt. However, NaOH-Po was decreased by P fertilizer application in NPK and NPKMg treatments, while long-term manure application maintained this Po pool in the soil. Stable P fractions were not affected by fertilization or by manuring. In all 6 yr of the study, P uptake by silage corn was significantly increased both by long-term N and P fertilizer application and also by manure incorporation. Phosphorus uptake by corn was highly related to all labile and moderately labile Pi fractions and Pt. Long-term application of dairy manure at a rate of 20 t ha−1 increased soil Pi forms and maintained Po fractions. Key words: Inorganic labile P, organic P, soil-P fractionation, P uptake, silage corn


2008 ◽  
Vol 88 (3) ◽  
pp. 327-335 ◽  
Author(s):  
D V Ige ◽  
O O Akinremi ◽  
D N Flaten

One of the key factors in phosphorus management is the P retention capacity (PRC) of the soil. In our previous study, we formulated several equations for estimating the phosphorus retention capacity of Manitoba soils. The objectives of the current study were to evaluate these equations using independent soil samples and to evaluate the influence of manure application on the predictive ability of these equations. Forty representative surface soil samples (20 soils with history of manure application and 20 without manure application history) were collected from across Manitoba. The P retention index (P150) and Langmuir adsorption maximum (Smax) were determined in the laboratory. The measured P retention capacities were then compared with those estimated using the formulated equations. Surprisingly, P150, which was obtained from a single measurement, was more robust than Smax that was obtained from at least 17 measurements as the equations provided a better estimate of P150 than Smax. Equations that were based on soil particle sizes (either percent clay or percent sand) provided poor estimates of soil PRC for the whole soil collection. However, when the soils were grouped on a pH basis, soil particle size worked better for soils with pH <7 than for soils with pH ≥7. The equations also worked better for soils with pH similar to those of the soils that were used to formulate the P retention equations. The accuracy of the predicted P sorption capacity improved with the manured soils due to the direct influence of manure application on soil properties that influence P retention such as Ca and Mg. Overall, the combination of CaM3, MgM3 and AlOx provided the best estimate of the PRC of Manitoba soils. Key words: Soil phosphorus, calcareous soils, phosphorus sorption, phosphorus retention, phosphorus retention capacity, estimating phosphorus retention capacity


2008 ◽  
Vol 47 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey D. Vaughan ◽  
Greg D. Hoyt ◽  
Arthur G. Wollum

2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


Sign in / Sign up

Export Citation Format

Share Document