Ion-Sink Phosphorus Extraction Methods Applied on 24 Soils from the Continental USA

2005 ◽  
Vol 69 (2) ◽  
pp. 511-521 ◽  
Author(s):  
R. G. Myers ◽  
A. N. Sharpley ◽  
S. J. Thien ◽  
G. M. Pierzynski
2018 ◽  
Vol 49 (18) ◽  
pp. 2284-2290
Author(s):  
Roghayeh Shahriaripour ◽  
Ahmad Tajabadipour ◽  
Isa Esfandiarpoor ◽  
Vahid Mozafary

1988 ◽  
Vol 19 (5) ◽  
pp. 579-595 ◽  
Author(s):  
L. M. Shuman ◽  
P. L. Raymer ◽  
J. L. Day ◽  
M. J. Cordonnier

Author(s):  
J. S. Tenywa ◽  
E. Odama ◽  
A. K. Amoding

Purpose: To evaluate the predictive capacity common procedures for soil P extraction and testing in laboratories in the region. Materials and Methods: A pot study with treatments viz. soil phosphorus extraction methods (Bray I, Bray II and Mehlich 3), and six P application rates (0, 20, 40, 60, 80 and 100 kg P ha-1). Maize (Zea mays L.) variety Longe IV was the test crop. A Ferralsol from northwestern Uganda (West Nile) was used in this study. Results and Conclusion: Mehlich 3 correlated most with plant P uptake by presenting the highest correlation coefficient with plant P content (r = 0.254) and a number of leaves per plant (r = 0.733). A strong positive correlation existed between Bray I and Mehlich 3 extractable P values (r = 0.975), suggesting lack of a marked difference between them; implying that either of the two procedures could be applied for soil P extraction in Ferralsols. However, Mehlich 3, being a multi-nutrient extractant, was recommended as the most suitable for P extraction for the Ferralsol used in this study.


2016 ◽  
Vol 61 (No. 2) ◽  
pp. 86-96 ◽  
Author(s):  
R. Wuenscher ◽  
H. Unterfrauner ◽  
R. Peticzka ◽  
F. Zehetner

Sign in / Sign up

Export Citation Format

Share Document