Distribution and Stability of Organic Carbon in Soil Aggregate External and Internal Layers under Three Different Land-Use Systems

2013 ◽  
Vol 77 (5) ◽  
pp. 1625-1635 ◽  
Author(s):  
Ruqin Fan ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
Xiaobin Guo ◽  
Xiaoping Zhang
2020 ◽  
Vol 297 ◽  
pp. 106924 ◽  
Author(s):  
Chukwuebuka C. Okolo ◽  
Girmay Gebresamuel ◽  
Amanuel Zenebe ◽  
Mitiku Haile ◽  
Peter N. Eze

2019 ◽  
Vol 35 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Stoécio Malta Ferreira Maia ◽  
Giordano Bruno Medeiros Gonzaga ◽  
Leilane Kristine dos Santos Silva ◽  
Guilherme Bastos Lyra ◽  
Tâmara Cláudia de Araújo Gomes

2020 ◽  
Vol 300 ◽  
pp. 106997
Author(s):  
Assefa Abegaz ◽  
Lulseged Tamene ◽  
Wuletawu Abera ◽  
Tesfaye Yaekob ◽  
Habtamu Hailu ◽  
...  

Author(s):  
Man Liu ◽  
Guilin Han ◽  
Qian Zhang

Soil aggregate stability can indicate soil quality, and affects soil organic carbon (SOC) and soil organic nitrogen (SON) sequestration. However, for erodible soils, the effects of soil aggregate stability on SOC and SON under land use change are not well known. In this study, soil aggregate distribution, SOC and SON content, soil aggregate stability, and soil erodibility were determined in the soils at different depths along the stages following agricultural abandonment, including cropland, abandoned cropland, and native vegetation land in an erodible region of Southwest China. Soil aggregation, soil aggregate stability, and SOC and SON content in the 0–20 cm depth soils increased after agricultural abandonment, but soil texture and soil erodibility were not affected by land use change. Soil erodibility remained in a low level when SOC contents were over 20 g·kg−1, and it significantly increased with the loss of soil organic matter (SOM). The SOC and SON contents increased with soil aggregate stability. This study suggests that rapidly recovered soil aggregate stability after agricultural abandonment promotes SOM sequestration, whereas sufficient SOM can effectively maintain soil quality in karst ecological restoration.


2012 ◽  
Vol 13 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Shanghua Sun ◽  
Jianjun Liu ◽  
Yongfu Li ◽  
Peikun Jiang ◽  
Scott X. Chang

CERNE ◽  
2012 ◽  
Vol 18 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Caio Batista Müller ◽  
Oscarlina Lúcia dos Santos Weber ◽  
José Fernando Scaramuzza

The objective of this study was to evaluate carbon input in labile and stable fractions in an ARGISOL of northwestern Brazil under different land use systems. Use systems being evaluated include: forest - MA (reference), agrosilvopasture - TCP (teak, cocoa and pasture); agroforest - TC (teak and cocoa); teak forest at 8 and 5 years - T8 and T5, and pasture - PA. In each system three furrows were made at depths of 0-5 cm, 5-10 cm and 10-20 cm. An area consisting of native vegetation (forest) adjacent to the experiment was sampled and used as control treatment. The use systems MA, T8 and T5 had higher levels of total organic carbon (COT) and the MA system had higher levels of labile carbon (CL) than the other systems, with the exception of TC at a depth of 10-20 cm. In the MA system, COT levels were higher in comparison to use systems TCP, TC and PA while CL levels were higher than the levels observed in use systems TCP and TC. In most cases being analyzed, CL levels were lower than COT levels, therefore this trait can be used as an indicator to assess anthropogenic changes relating to the maintenance or condition of soil organic matter.


2016 ◽  
Vol 29 (2) ◽  
pp. 263-273 ◽  
Author(s):  
MARCELO RIBEIRO VILELA PRADO ◽  
FABRICIO TOMAZ RAMOS ◽  
OSCARLINA LÚCIA DOS SANTOS WEBER ◽  
CAIO BATISTA MÜLLER

ABSTRACT: The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF) and kudzu (Pueraria montana); Agroforestry System 2: coffee (Coffea canephora), marandu palisade grass (Brachiaria brizantha cv. Marandu), "pinho cuiabano" (Parkia multijuga), teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao); Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m) with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions) in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.


Sign in / Sign up

Export Citation Format

Share Document