Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy

2008 ◽  
Vol 93 (5-6) ◽  
pp. 853-862 ◽  
Author(s):  
L. C. Basciano ◽  
R. C. Peterson
Author(s):  
Sergey M. Aksenov ◽  
Anastasia D. Ryanskaya ◽  
Yuliya V. Shchapova ◽  
Nikita V. Chukanov ◽  
Nikolay V. Vladykin ◽  
...  

Specific features of the crystal chemistry of lamprophyllite-group minerals (LGMs) are discussed using the available literature data and the results of the single-crystal X-ray diffraction and a Raman spectroscopic studies of several samples taken from the Murun alkaline complex (Russia), and Rocky Boy and Gordon Butte pegmatites (USA) presented here. The studied samples are unique in their chemical features and the distribution of cations over structural sites. In particular, the sample from the Gordon Butte pegmatite is a member of the barytolamprophyllite–emmerichite solid solution series, whereas the samples from the Murun alkaline complex and from the Rocky Boy pegmatite are intermediate members of the solid solution series formed by lamprophyllite and a hypothetical Sr analogue of emmerichite. The predominance of O2− over OH− and F− at the X site is a specific feature of sample Cha-192 from the Murun alkaline complex. New data on the Raman spectra of LGMs obtained in this work show that the wavenumbers of the O—H stretching vibrations depend on the occupancies of the M2 and M3 sites coordinating with (OH)− groups. Cations other than Na+ and Ti4+ (mainly, Mg and Fe3+) can play a significant role in the coordination of the X site occupied by (OH)−. Data on polarized Raman spectra of an oriented sample indicate that the OH groups having different local coordinations have similar orientations with respect to the crystal. The calculated measures of similarity (Δ) for lamprophyllite and ericssonite are identical (0.157 and 0.077 for the 2M- and 2O-polytypes, respectively), which indicates that these minerals are crystal-chemically isotypic and probably should be considered within the same mineral group by analogy to the other mineralogical groups which combine isotypic minerals.


2007 ◽  
Vol 71 (4) ◽  
pp. 427-441 ◽  
Author(s):  
L. C. Basciano ◽  
R. C. Peterson

AbstractThe atomic structure of ammoniojarosite,[(NH4)Fe3(SO4)2(OH)6], a = 7.3177(3) Å, c = 17.534(1) Å, space group Rm, Z = 3, has been solved using single-crystal X-ray diffraction (XRD) to wR 3.64% and R 1.4%. The atomic coordinates of the hydrogen atoms of the NH4 group were located and it was found that the ammonium group has two different orientations with equal probability. Hydronium commonly substitutes into jarosite group mineral structures and samples in the ammoniojarosite–hydronium jarosite solid-solution series were synthesized and analysed using powder XRD and Rietveld refinement. Changes in unit-cell dimensions and bond lengths are noted across the solidsolution series. The end-member ammoniojarosite synthesized in this study has no hydronium substitution in the A site and the unit-cell dimensions determined have a smaller a dimension and larger c dimension than previous studies. Two natural ammoniojarosite samples were analysed and shown to have similar unit-cell dimensions to the synthetic samples. Short-wave infrared and Fourier transform infrared spectra were collected for samples from the NH4–H3O jarosite solid-solution series and the differences between the end-members were significant. Both are useful tools for determining NH4 content in jarosite group minerals.


2007 ◽  
Vol 92 (7) ◽  
pp. 1133-1147 ◽  
Author(s):  
G. Dorsam ◽  
A. Liebscher ◽  
B. Wunder ◽  
G. Franz ◽  
M. Gottschalk

Sign in / Sign up

Export Citation Format

Share Document