Modeling Phase Changes of Road Networks

2009 ◽  
Author(s):  
Arthur Huang ◽  
David Matthew Levinson
Keyword(s):  
Author(s):  
J. M. Cowley ◽  
Sumio Iijima

The imaging of detailed structures of crystal lattices with 3 to 4Å resolution, given the correct conditions of microscope defocus and crystal orientation and thickness, has been used by Iijima (this conference) for the study of new types of crystal structures and the defects in known structures associated with fluctuations of stoichiometry. The image intensities may be computed using n-beam dynamical diffraction theory involving several hundred beams (Fejes, this conference). However it is still important to have a suitable approximation to provide an immediate rough estimate of contrast and an evaluation of the intuitive interpretation in terms of an amplitude object.For crystals 100 to 150Å thick containing moderately heavy atoms the phase changes of the electron wave vary by about 10 radians suggesting that the “optimum defocus” theory of amplitude contrast for thin phase objects due to Scherzer and others can not apply, although it does predict the right defocus for optimum imaging.


Metrologiya ◽  
2020 ◽  
pp. 25-42
Author(s):  
Dmitrii V. Khablov

This paper describes a promising method for non-contact vibration diagnostics based on the use of Doppler microwave sensors. In this case, active irradiation of the object with electromagnetic waves and the allocation of phase changes using two-channel quadrature processing of the received reflected signal are used. The modes of further fine analysis of the resulting signal using spectral or wavelet transformations depending on the nature of the active vibration are considered. The advantages of this non-contact and remote vibration analysis method for the study of complex dynamic objects are described. The convenience of the method for machine learning and use in intelligent systems of non-destructive continuous monitoring of the state of these objects by vibration is noted.


Author(s):  
Suresh Akella ◽  
◽  
B Ramesh Kumar ◽  
Keyword(s):  

2018 ◽  
Author(s):  
C. Michael McGuirk ◽  
Tomče Runčevski ◽  
Julia Oktawiec ◽  
Ari Turkiewicz ◽  
mercedes K. taylor ◽  
...  

<p>Metal–organic frameworks that display step-shaped adsorption profiles arising from discrete pressure-induced phase changes are promising materials for applications in both high-capacity gas storage and energy-efficient gas separations. The thorough investigation of such materials through chemical diversification, gas adsorption measurements, and <i>in situ </i>structural characterization is therefore crucial for broadening their utility. We examine a series of isoreticular, flexible zeolitic imidazolate frameworks (ZIFs) of the type M(bim)<sub>2</sub> (SOD; M = Zn<sup> </sup>(ZIF-7), Co (ZIF-9), Cd (CdIF-13); bim<sup>–</sup> = benzimidazolate), and elucidate the effects of metal substitution on the pressure-responsive phase changes and the resulting CO<sub>2</sub> and CH<sub>4</sub> step positions, pre-step uptakes, and step capacities. Using ZIF-7 as a benchmark, we reexamine the poorly understood structural transition responsible for its adsorption steps and, through high-pressure adsorption measurements, verify that it displays a step in its CH<sub>4 </sub>adsorption isotherms. The ZIF-9 material is shown to undergo an analogous phase change, yielding adsorption steps for CO<sub>2</sub> and CH<sub>4</sub> with similar profiles and capacities to ZIF-7, but with shifted threshold pressures. Further, the Cd<sup>2+</sup> analogue CdIF-13 is reported here for the first time, and shown to display adsorption behavior distinct from both ZIF-7 and ZIF-9, with negligible pre-step adsorption, a ~50% increase in CO<sub>2</sub> and CH<sub>4</sub> capacity, and dramatically higher threshold adsorption pressures. Remarkably, a single-crystal-to-single-crystal phase change to a pore-gated phase is also achieved with CdIF-13, providing insight into the phase change that yields step-shaped adsorption in these flexible ZIFs. Finally, we show that the endothermic phase change of these frameworks provides intrinsic heat management during gas adsorption. </p>


2010 ◽  
Vol 33 (8) ◽  
pp. 1396-1404 ◽  
Author(s):  
Liang ZHAO ◽  
Luo CHEN ◽  
Ning JING ◽  
Wei LIAO

Sign in / Sign up

Export Citation Format

Share Document