scholarly journals Potential Effects of New Zealand's Policy on Next Generation High-Speed Access Networks

2014 ◽  
Author(s):  
Kay Eric Winkler
2018 ◽  
Vol 10 (12) ◽  
pp. 118 ◽  
Author(s):  
Jinlong Wei ◽  
Ji Zhou ◽  
Elias Giacoumidis ◽  
Paul Haigh ◽  
Jianming Tang

To address the continuous growth in high-speed ubiquitous access required by residential users and enterprises, Telecommunication operators must upgrade their networks to higher data rates. For optical fiber access networks that directly connect end users to metro/regional network, capacity upgrade must be done in a cost- and energy-efficient manner. 40 Gb/s is the possible lane rate for the next generation passive optical networks (NG-PONs). Ideally, existing 10 G PON components could be reused to support 40 Gb/s lane-rate NG-PON transceiver, which requires efficient modulation format and digital signal processing (DSP) to alleviate the bandwidth limitation and fiber dispersion. The major contribution of this work is to offer insight performance comparisons of 40 Gb/s lane rate electrical three level Duobinary, optical Duobinary, and four-level pulse amplitude modulation (PAM-4) for incorporating low complex DSPs, including linear and nonlinear Volterra equalization, as well as maximum likelihood sequence estimation. Detailed analysis and comparison of the complexity of various DSP algorithms are performed. Transceiver bandwidth optimization is also undertaken. The results show that the choices of proper modulation format and DSP configuration depend on the transmission distances of interest.


2010 ◽  
Vol 21 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Hussein Al-Zubaidy ◽  
Ioannis Lambadaris ◽  
Jerome Talim

Author(s):  
John Tunna ◽  
Jingjun Zhang ◽  
Adrian Gorski

The Passenger Rail Investment and Improvement Act (PRIIA) Section 305 Next Generation Equipment Committee’s specification for diesel-electric locomotives has several challenging requirements. Among these is limiting P2 Force to 82,000 pound force (lbf) at 125 miles per hour (mph). To achieve this, the locomotive designer would have to balance unsprung mass and axle load. A design envelope exists within which that balance can be achieved. Advanced designs of traction and braking systems are required, and attention has to be paid to minimizing the overall mass of the locomotive.


Sign in / Sign up

Export Citation Format

Share Document