Design Concepts for the Next Generation of High-Speed Diesel-Electric Locomotives

Author(s):  
John Tunna ◽  
Jingjun Zhang ◽  
Adrian Gorski

The Passenger Rail Investment and Improvement Act (PRIIA) Section 305 Next Generation Equipment Committee’s specification for diesel-electric locomotives has several challenging requirements. Among these is limiting P2 Force to 82,000 pound force (lbf) at 125 miles per hour (mph). To achieve this, the locomotive designer would have to balance unsprung mass and axle load. A design envelope exists within which that balance can be achieved. Advanced designs of traction and braking systems are required, and attention has to be paid to minimizing the overall mass of the locomotive.

2011 ◽  
Vol 1 (1) ◽  
pp. 60-65
Author(s):  
Ralph Michael Schmidt ◽  
Clemens Senghaas ◽  
Thomas Ziegler ◽  
Michael Willmann

2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2011 ◽  
Vol 4 (2) ◽  
pp. 2240-2256 ◽  
Author(s):  
Carlo Alberto Rinaldini ◽  
Enrico Mattarelli ◽  
Valeri Golovitchev

2009 ◽  
Author(s):  
Pieter Roels ◽  
Yves Sledsens ◽  
Sebastian Verhelst ◽  
Roger Sierens ◽  
Lieven Vervaeke

Sign in / Sign up

Export Citation Format

Share Document