Efficient Hybrid Symbolic-Numeric Computational Method for Piecewise Linear Systems with Coulomb Friction

2021 ◽  
Author(s):  
Amir Shahhosseini ◽  
Meng-Hsuan Tien ◽  
Kiran D’Souza
2021 ◽  
Author(s):  
Amir Shahhosseini ◽  
Meng-Hsuan Tien ◽  
Kiran D’Souza

Abstract A general formulation of piecewise linear systems with discontinuous force elements is provided in this paper. It has been demonstrated that this class of nonlinear systems is of great importance due to their ability to accurately model numerous scientific and engineering phenomena. Additionally, it is shown that this class of nonlinear systems can demonstrate a wide spectrum of nonlinear motions and in fact, the phenomenon of weak chaos is observed in a mechanical assembly for the first time. Despite such importance, efficient methods for fast and accurate evaluation of piecewise linear systems’ responses are lacking and the methods of the literature are either incompatible, very slow, very inaccurate, or bear a combination of the aforementioned deficiencies. To overcome this shortcoming, a novel symbolic-numeric method is presented in this paper that is able to obtain the analytical response of piecewise linear systems with discontinuous elements in an efficient manner. Contrary to other efficient methods that are based on stationary steady state dynamics, this method will not experience failure upon the occurrence of complex motion and is able to capture the entirety of the dynamics.


2021 ◽  
Vol 496 (2) ◽  
pp. 124818
Author(s):  
Emilio Freire ◽  
Enrique Ponce ◽  
Joan Torregrosa ◽  
Francisco Torres

2012 ◽  
Vol 24 (4) ◽  
pp. 1047-1084 ◽  
Author(s):  
Xiao-Tong Yuan ◽  
Shuicheng Yan

We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008 ), and support vector machines (Cortes & Vapnik, 1995 ). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.


Author(s):  
Mathieu Desroches ◽  
Emilio Freire ◽  
S. John Hogan ◽  
Enrique Ponce ◽  
Phanikrishna Thota

We show that a planar slow–fast piecewise-linear (PWL) system with three zones admits limit cycles that share a lot of similarity with van der Pol canards, in particular an explosive growth. Using phase-space compactification, we show that these quasi-canard cycles are strongly related to a bifurcation at infinity. Furthermore, we investigate a limiting case in which we show the existence of a continuum of canard homoclinic connections that coexist for a single-parameter value and with amplitude ranging from an order of ε to an order of 1, a phenomenon truly associated with the non-smooth character of this system and which we call super-explosion .


Sign in / Sign up

Export Citation Format

Share Document