Polymeric Silver(I) Complexes Based on Non-Steroidal Anti-Inflammatory Drug (Niflumic Acid and Naproxen) and Picoline Derivatives: Synthesis, X-Ray Structure, Spectroscopic, Thermal Studies and Anticancer Activity Through Apoptosis

2021 ◽  
Author(s):  
Sema Caglar ◽  
Ahmet Altay ◽  
Betul Harurluoglu ◽  
Esma Kubra Kagan Yeniceri ◽  
Bulent Caglar ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2140
Author(s):  
Francisco Javier Acebedo-Martínez ◽  
Carolina Alarcón-Payer ◽  
Antonio Frontera ◽  
Rafael Barbas ◽  
Rafel Prohens ◽  
...  

Any time the pharmaceutical industry develops a new drug, potential polymorphic events must be thoroughly described, because in a crystalline pharmaceutical solid, different arrangements of the same active pharmaceutical ingredient can yield to very different physicochemical properties that might be crucial for its efficacy, such as dissolution, solubility, or stability. Polymorphism in cocrystal formulation cannot be neglected, either. In this work, two different cocrystal polymorphs of the non-steroidal anti-inflammatory drug niflumic acid and caffeine are reported. They have been synthesized by mechanochemical methods and thoroughly characterized in solid-state by powder and single crystal X-ray diffraction respectively, as well as other techniques such as thermal analyses, infrared spectroscopy and computational methods. Both theoretical and experimental results are in agreement, confirming a conformational polymorphism. The polymorph NIF–CAF Form I exhibits improved solubility and dissolution rate compared to NIF–CAF Form II, although Form II is significantly more stable than Form I. The conditions needed to obtain these polymorphs and their transition have been carefully characterized, revealing an intricate system.


2017 ◽  
Vol 176 ◽  
pp. 100-112 ◽  
Author(s):  
Alketa Tarushi ◽  
Catherine P. Raptopoulou ◽  
Vassilis Psycharis ◽  
Dimitris P. Kessissoglou ◽  
Athanasios N. Papadopoulos ◽  
...  

2018 ◽  
Vol 45 (3) ◽  
pp. 867-882
Author(s):  
Roberta Costa ◽  
Davide Antonio Civello ◽  
Emanuele Bernardinelli ◽  
Simone Vanoni ◽  
Michaela Zopf ◽  
...  

Background/Aims: In the human genome, more than 400 genes encode ion channels, which are ubiquitously expressed and often coexist and participate in almost all physiological processes. Therefore, ion channel blockers represent fundamental tools in discriminating the contribution of individual channel types to a physiological phenomenon. However, unspecific effects of these compounds may represent a confounding factor. Three commonly used chloride channel inhibitors, i.e. 4,4′-diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS), 5-nitro-2-[(3-phenylpropyl) amino]benzoic acid (NPPB) and the anti-inflammatory drug niflumic acid were tested to identify the lowest concentration effective on Cl- channels and ineffective on K+ channels. Methods: The activity of the above mentioned compounds was tested by whole cell patch-clamp on the swelling-activated Cl- current ICl,swell and on the endogenous voltage-dependent, outwardly rectifying K+ selective current in human kidney cell lines (HEK 293/HEK 293 Phoenix). Results: Micromolar (1-10 µM) concentrations of DIDS and NPPB could not discriminate between the Cl- and K+ selective currents. Specifically, 1 µM DIDS only affected the K+ current and 10 µM NPPB equally affected the Cl- and K+ currents. Only relatively high (0.1-1 mM) concentrations of DIDS and prolonged (5 minutes) exposure to 0.1-1 mM NPPB preferentially suppressed the Cl- current. Niflumic acid preferentially inhibited the Cl- current, but also significantly affected the K+ current. The endogenous voltage-dependent, outwardly rectifying K+ selective current in HEK 293/HEK 293 Phoenix cells was shown to arise from the Kv 3.1 channel, which is extensively expressed in brain and is involved in neurological diseases. Conclusion: The results of the present study underscore that sensitivity of a given physiological phenomenon to the Cl- channel inhibitors NPPB, DIDS and niflumic acid may actually arise from an inhibition of Cl- channels but can also result from an inhibition of voltage-dependent K+ channels, including the Kv 3.1 channel. The use of niflumic acid as anti-inflammatory drug in patients with concomitant Kv 3.1 dysfunction may result contraindicated.


2003 ◽  
Vol 95 (2-3) ◽  
pp. 131-140 ◽  
Author(s):  
M.R. Moya-Hernández ◽  
A. Mederos ◽  
S. Domı́nguez ◽  
A. Orlandini ◽  
C.A. Ghilardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document