Closed-Form Solutions for European and Digital Calls in the Hull and White Stochastic Volatility Model and Their Relation to Locally R-Minimizing and Delta Hedges

2007 ◽  
Author(s):  
Christian-Oliver Ewald ◽  
Klaus Reiner Schenk-Hoppé ◽  
Zhaojun Yang
2016 ◽  
Vol 57 (3) ◽  
pp. 244-268
Author(s):  
SANAE RUJIVAN

The main purpose of this paper is to present a novel analytical approach for pricing discretely sampled gamma swaps, defined in terms of weighted variance swaps of the underlying asset, based on Heston’s two-factor stochastic volatility model. The closed-form formula obtained in this paper is in a much simpler form than those proposed in the literature, which substantially reduces the computational burden and can be implemented efficiently. The solution procedure presented in this paper can be adopted to derive closed-form solutions for pricing various types of weighted variance swaps, such as self-quantoed variance and entropy swaps. Most interestingly, we discuss the validity of the current solutions in the parameter space, and provide market practitioners with some remarks for trading these types of weighted variance swaps.


2012 ◽  
Vol 15 (07) ◽  
pp. 1250051 ◽  
Author(s):  
JACINTO MARABEL ROMO

This article considers a multi-asset model based on Wishart processes that accounts for stochastic volatility and for stochastic correlations between the underlying assets, as well as between their volatilities. The model accounts for the existence of correlation term structure and correlation skew. The article shows that the Wishart specification can generate different patterns corresponding to the correlation skew for a wide range of correlation term structures. Another advantage of the model is that it is analytically tractable and, hence, it is possible to obtain semi-closed-form solutions for the prices of plain vanilla options, as well as for the price of exotic derivatives. In this sense, this article develops semi-closed-form formulas for the price of European worst-of options with barriers and/or forward-start features. To motivate the introduction of the Wishart volatility model, the article compares the prices obtained under this model and under a multi-asset stochastic volatility model with constant instantaneous correlations. The results reveal the existence of a stochastic correlation premium and show that the consideration of stochastic correlation is a key element for the valuation of these structures.


Author(s):  
Puneet Pasricha ◽  
Anubha Goel

This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.


Author(s):  
Huojun Wu ◽  
Zhaoli Jia ◽  
Shuquan Yang ◽  
Ce Liu

In this paper, we discuss the problem of pricing discretely sampled variance swaps under a hybrid stochastic model. Our modeling framework is a combination with a double Heston stochastic volatility model and a Cox–Ingersoll–Ross stochastic interest rate process. Due to the application of the T-forward measure with the stochastic interest process, we can only obtain an efficient semi-closed form of pricing formula for variance swaps instead of a closed-form solution based on the derivation of characteristic functions. The practicality of this hybrid model is demonstrated by numerical simulations.


2016 ◽  
Vol 19 (05) ◽  
pp. 1650031 ◽  
Author(s):  
NICOLAS LANGRENÉ ◽  
GEOFFREY LEE ◽  
ZILI ZHU

We examine the inverse gamma (IGa) stochastic volatility model with time-dependent parameters. This nonaffine model compares favorably in terms of volatility distribution and volatility paths to classical affine models such as the Heston model, while being as parsimonious (only four stochastic parameters). In practice, this means more robust calibration and better hedging, explaining its popularity among practitioners. Closed-form volatility-of-volatility expansions are obtained for the price of vanilla options, which allow for very fast pricing and calibration to market data. Specifically, the price of a European put option with IGa volatility is approximated by a Black–Scholes price plus a weighted combination of Black–Scholes Greeks, with weights depending only on the four time-dependent parameters of the model. The accuracy of the expansion is illustrated on several calibration tests on foreign exchange market data. This paper shows that the IGa model is as simple, more realistic, easier to implement and faster to calibrate than classical transform-based affine models. We therefore hope that the present work will foster further research on nonaffine models favored by practitioners such as the IGa model.


Author(s):  
Pengzhan Chen ◽  
Wuyi Ye

In light of recent empirical research on jump activity, this article study the calibration of a new class of stochastic volatility models that include both jumps in return and volatility. Specifically, we consider correlated jump sizes and both contemporaneous and independent arrival of jumps in return and volatility. Based on the specifications of this model, we derive a closed-form relationship between the VIX index and latent volatility. Also, we propose a closed-form logarithmic likelihood formula by using the link to the VIX index. By estimating alternative models, we find that the general counting processes setting lead to better capturing of return jump behaviors. That is, the part where the return and volatility jump simultaneously and the part that jump independently can both be captured. In addition, the size of the jumps in volatility is, on average, positive for both contemporaneous and independent arrivals. However, contemporaneous jumps in the return are negative, but independent return jumps are positive. The sub-period analysis further supports above insight, and we find that the jumps in return and volatility increased significantly during the two recent economic crises.


2014 ◽  
Vol 56 (1) ◽  
pp. 1-27 ◽  
Author(s):  
SANAE RUJIVAN ◽  
SONG-PING ZHU

AbstractWe develop a simplified analytical approach for pricing discretely-sampled variance swaps with the realized variance, defined in terms of the squared log return of the underlying price. The closed-form formula obtained for Heston’s two-factor stochastic volatility model is in a much simpler form than those proposed in literature. Most interestingly, we discuss the validity of our solution as well as some other previous solutions in different forms in the parameter space. We demonstrate that market practitioners need to be cautious, making sure that their model parameters extracted from market data are in the right parameter subspace, when any of these analytical pricing formulae is adopted to calculate the fair delivery price of a discretely-sampled variance swap.


Sign in / Sign up

Export Citation Format

Share Document