scholarly journals Completions of reduced local rings with prescribed minimal prime ideals

2016 ◽  
Vol 9 (1) ◽  
pp. 101-118
Author(s):  
Susan Loepp ◽  
Byron Perpetua
2018 ◽  
Vol 85 (3-4) ◽  
pp. 356
Author(s):  
Paula Kemp ◽  
Louis J. Ratliff, Jr. ◽  
Kishor Shah

<p>It is shown that, for all local rings (R,M), there is a canonical bijection between the set <em>DO(R)</em> of depth one minimal prime ideals ω in the completion <em><sup>^</sup>R</em> of <em>R</em> and the set <em>HO(R/Z)</em> of height one maximal ideals <em>̅M'</em> in the integral closure <em>(R/Z)'</em> of <em>R/Z</em>, where <em>Z </em>:<em>= Rad(R)</em>. Moreover, for the finite sets <strong>D</strong> := {<em>V*/V* </em>:<em>= (<sup>^</sup>R/ω)'</em>, ω ∈ DO(R)} and H := {<em>V/V := (R/Z)'<sub><em>̅M'</em></sub>, <em>̅M'</em> ∈ HO(R/Z)</em>}:</p><p>(a) The elements in <strong>D</strong> and <strong>H</strong> are discrete Noetherian valuation rings.</p><p>(b) <strong>D</strong> = {<em><sup>^</sup>V</em> ∈ <strong>H</strong>}.</p>


2005 ◽  
Vol 4 (3) ◽  
Author(s):  
Abhishek Banerjee

In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime ideals of a noetherian ring. In particular, we express noetherian rings with certain properties as finite direct products of noetherian rings with a unique minimal prime ideal, as an analogue to the expression of an artinian ring as a finite direct product of artinian local rings. Besides, we also consider the set of ideals I in R such that M ≠ I M for a given module M and show that a maximal element among these is prime. In Section Four, we deal with dimensions of prime ideals, Krull’s Small Dimension Theorem and generalize it (and its converse) to the case of a finite set of prime ideals. Towards the end of the paper, we also consider the sets of linear dependencies that might hold between the generators of an ideal and consider the ideals generated by the coefficients in such linear relations.


1991 ◽  
Vol 109 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Nguyen Tu Cuong

In this paper we mainly consider local rings admitting dualizing complexes. It is well-known that if a Noetherian local ring A admits a dualizing complex, then the non-Cohen–Macaulay (abbreviated CM) locus of A is closed in the Zariski topology (cf. [8, 10]). If the dimension of this locus is zero and A is equidimensional, i.e. the punctured spectrum of A is locally CM and dim(A/P) = dim (A) for all minimal prime ideals P ∈ Ass (A), then A is a generalized CM ring and its structure is well-understood (see [2, 12]). For instance, one of the characterizations of generalized CM rings is the conditions that for any parameter ideal q contained in a large power of the maximal ideal m of A, the difference between length and multiplicityis independent of the choice of q. However, if the dimension of the non-CM locus is larger than zero, little is known about how this dimension is related to the structure of the local ring A. The purpose of this paper is to show that if M is a finitely generated A-module, then there exist systems of parameters x = (x1, …, xd) (where d = dim M) such that the differenceis a polynomial in n1, …, nd for all positive integers n1, …, nd and the degree of IM(n1, …, nd;x) is independent of the choice of x. We shall also give various characterizations of this degree by using the notion of reducing systems of parameters of Auslander and Buchsbaum[l]. In particular, if the module M is equidimensional we shall show that the degree of IM(n1, …, nd;x) is equal to the dimension of the non-CM locus of M.


2012 ◽  
Vol 4 (1) ◽  
pp. 29-56 ◽  
Author(s):  
N. Arnosti ◽  
R. Karpman ◽  
C. Leverson ◽  
J. Levinson ◽  
S. Loepp

1999 ◽  
Vol 51 (7) ◽  
pp. 1129-1134
Author(s):  
B. V. Zabavskii ◽  
A. I. Gatalevich
Keyword(s):  

2013 ◽  
Vol 38 ◽  
pp. 49-59
Author(s):  
MS Raihan

A convex subnearlattice of a nearlattice S containing a fixed element n?S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal n-ideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In this paper, we include several characterizations of those Pn(S) which form m-normal nearlattices. We also show that Pn(S) is m-normal if and only if for any m+1 distinct minimal prime n-ideals Po,P1,…., Pm of S, Po ? … ? Pm = S. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16548 Rajshahi University J. of Sci. 38, 49-59 (2010)


2010 ◽  
pp. 69-81 ◽  
Author(s):  
W. D. Burgess ◽  
A. Lashgari ◽  
A. Mojiri
Keyword(s):  

1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050074
Author(s):  
Junye Ma ◽  
Qingguo Li ◽  
Hui Li

In this paper, we study some graph-theoretic properties about the zero-divisor graph [Formula: see text] of a finite quasi-ordered set [Formula: see text] with a least element 0 and its line graph [Formula: see text]. First, we offer a method to find all the minimal prime ideals of a quasi-ordered set. Especially, this method is applicable for a partially ordered set. Then, we completely characterize the diameter and girth of [Formula: see text] by the minimal prime ideals of [Formula: see text]. Besides, we perfectly classify all finite quasi-ordered sets whose zero-divisor graphs are complete graphs, star graphs, complete bipartite graphs, complete [Formula: see text]-partite graphs. We also investigate the planarity of [Formula: see text]. Finally, we obtain the characterization for the line graph [Formula: see text] in terms of its diameter, girth and planarity.


Sign in / Sign up

Export Citation Format

Share Document