scholarly journals Noetherian Rings—Dimension and Chain Conditions

2005 ◽  
Vol 4 (3) ◽  
Author(s):  
Abhishek Banerjee

In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime ideals of a noetherian ring. In particular, we express noetherian rings with certain properties as finite direct products of noetherian rings with a unique minimal prime ideal, as an analogue to the expression of an artinian ring as a finite direct product of artinian local rings. Besides, we also consider the set of ideals I in R such that M ≠ I M for a given module M and show that a maximal element among these is prime. In Section Four, we deal with dimensions of prime ideals, Krull’s Small Dimension Theorem and generalize it (and its converse) to the case of a finite set of prime ideals. Towards the end of the paper, we also consider the sets of linear dependencies that might hold between the generators of an ideal and consider the ideals generated by the coefficients in such linear relations.

1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


2018 ◽  
Vol 61 (03) ◽  
pp. 705-725
Author(s):  
DIPANKAR GHOSH ◽  
TONY J. PUTHENPURAKAL

AbstractLet R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


1983 ◽  
Vol 26 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Paul Milnes

AbstractA classical result of I. Glicksberg and K. de Leeuw asserts that the almost periodic compactification of a direct product S × T of abelian semigroups with identity is (canonically isomorphic to) the direct product of the almost periodic compactiflcations of S and T. Some efforts have been made to generalize this result and recently H. D. Junghenn and B. T. Lerner have proved a theorem giving necessary and sufficient conditions for an F-compactification of a semidirect product S⊗σT to be a semidirect product of compactiflcations of S and T. A different such theorem is presented here along with a number of corollaries and examples which illustrate its scope and limitations. Some behaviour that can occur for semidirect products, but not for direct products, is exposed


Author(s):  
Colin J. H. McDiarmid

The theorem of R. Rado (12) to which I refer by the name ‘Rado's theorem for matroids’ gives necessary and sufficient conditions for a family of subsets of a finite set Y to have a transversal independent in a given matroid on Y. This theorem is of fundamental importance in both transversal theory and matroid theory (see, for example, (11)). In (3) J. Edmonds introduced and studied ‘polymatroids’ as a sort of continuous analogue of a matroid. I start this paper with a brief introduction to polymatroids, emphasizing the role of the ‘ground-set rank function’. The main result is an analogue for polymatroids of Rado's theorem for matroids, which I call not unnaturally ‘Rado's theorem for polymatroids’.


2000 ◽  
Vol 43 (3) ◽  
pp. 312-319 ◽  
Author(s):  
David E. Dobbs

AbstractIf n and m are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring R with exactly n elements and exactly m prime ideals. Next, assuming the Axiom of Choice, it is proved that if R is a commutative ring and T is a commutative R-algebra which is generated by a set I, then each chain of prime ideals of T lying over the same prime ideal of R has at most 2|I| elements. A polynomial ring example shows that the preceding result is best-possible.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850023 ◽  
Author(s):  
L. Izelgue ◽  
O. Ouzzaouit

Let [Formula: see text] and [Formula: see text] be two rings, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] be a ring homomorphism. The ring [Formula: see text] is called the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect to [Formula: see text]. It was proposed by D’anna and Fontana [Amalgamated algebras along an ideal, Commutative Algebra and Applications (W. de Gruyter Publisher, Berlin, 2009), pp. 155–172], as an extension for the Nagata’s idealization, which was originally introduced in [Nagata, Local Rings (Interscience, New York, 1962)]. In this paper, we establish necessary and sufficient conditions under which [Formula: see text], and some related constructions, is either a Hilbert ring, a [Formula: see text]-domain or a [Formula: see text]-ring in the sense of Adams [Rings with a finitely generated total quotient ring, Canad. Math. Bull. 17(1) (1974)]. By the way, we investigate the transfer of the [Formula: see text]-property among pairs of domains sharing an ideal. Our results provide original illustrating examples.


2008 ◽  
Vol 07 (01) ◽  
pp. 109-128
Author(s):  
D. P. PATIL ◽  
G. TAMONE

Let (R,𝔪) be a 1-dimensional Cohen–Macaulay local ring of multiplicity e and embedding dimension ν ≥ 2. Let B denote the blowing-up of R along 𝔪 and let I be the conductor of R in B. Let x ∈ 𝔪 be a superficial element in 𝔪 of degree 1 and [Formula: see text], [Formula: see text]. We assume that the length [Formula: see text]. This class of local rings contains the class of 1-dimensional Gorenstein local rings (see 1.5). In Sec. 1, we prove that (see 1.6) if the associated graded ring G = gr 𝔪(R) is Cohen–Macaulay, then I ⊆ 𝔪s + xR, where s is the degree of the h-polynomial h R of R. In Sec. 2, we give necessary and sufficient conditions (see Corollaries 2.4, 2.5, 2.9 and Theorem 2.11) for the Cohen–Macaulayness of G. These conditions are numerical conditions on the h-polynomial h R, particularly on its coefficients and the degree in comparison with the difference e - ν. In Sec. 3, we give some conditions (see Propositions 3.2, 3.3 and Corollary 3.4) for the Gorensteinness of G. In Sec. 4, we give a characterization (see Proposition 4.3) of numerical semigroup rings which satisfy the condition [Formula: see text].


1992 ◽  
Vol 111 (3) ◽  
pp. 545-556 ◽  
Author(s):  
Karlheinz Gröchenig ◽  
Eberhard Kaniuth ◽  
Keith F. Taylor

The main purpose of this paper is to study projections, that is, self-adjoint idempotents, in L1-algebras of semi-direct products G = ℝ ⋉ ℝd, d ≥ 2. We establish necessary and sufficient conditions for the existence of non-zero projections in terms of the action of ℝ on ℝd. In the cases where such projections exist, we describe minimal ones in detail.


1982 ◽  
Vol 23 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Mary Snowden ◽  
J. M. Howie

Let X be a finite set and let (X) be the full transformation semigroup on X, i.e. the set of all mappings from X into X, the semigroup operation being composition of mappings. This paper aims to characterize those elements of (X) which have square roots. An easily verifiable necessary condition, that of being quasi-square, is found in Theorem 2, and in Theorems 4 and 5 we find necessary and sufficient conditions for certain special elements of (X). The property of being compatibly amenable is shown in Theorem 7 to be equivalent for all elements of (X) to the possession of a square root.


Sign in / Sign up

Export Citation Format

Share Document