A level-set viscoelastic constitutive model for multi-shape memory polymers and composites

2021 ◽  
Vol 16 (3) ◽  
pp. 347-370
Author(s):  
Fei Zhao ◽  
Shichen Zhou ◽  
Bo Zhou ◽  
Shifeng Xue
2017 ◽  
Vol 705 ◽  
pp. 146-155 ◽  
Author(s):  
Jianming Guo ◽  
Jingbiao Liu ◽  
Zhenqing Wang ◽  
Xiaofu He ◽  
Lifeng Hu ◽  
...  

Author(s):  
Mahesh Khanolkar ◽  
Jaskirat Sodhi ◽  
I. Joga Rao

The constitutive model for the mechanics of crystallizable shape memory polymers (CSMP) has been developed in the past [1, 2]. The model was developed using the theory of multiple natural configurations and has been successful in addressing a diverse class of problems. In this research work, the efficacy of the developed CSMP model is tested by applying it to the torsion of a cylinder, which is an inhomogeneous deformation. The crystallization of the cylinder is studied under two different conditions i.e. crystallization under constant shear and crystallization under constant moment.


2021 ◽  
Vol 30 (3) ◽  
pp. 035030
Author(s):  
Jinsu Kim ◽  
Seung-Yeol Jeon ◽  
Seokbin Hong ◽  
Yongsan An ◽  
Haedong Park ◽  
...  

Author(s):  
Jaskirat S. Sodhi ◽  
Swapnil Moon ◽  
I. Joga Rao

Light Activated Shape Memory Polymers (LASMP) are recently developed innovative materials defined by their capacity to store a deformed (temporary) shape and recover an original (parent) shape. This change in shape and the return to original shape is achieved by exposing the polymer to light at different wavelengths. These unique properties have led to the use of LASMP’s in a wide variety of applications. These SMP’s have a great potential in the biomedical industry as well as the aerospace industry. In the past, the authors have introduced a constitutive model to model the mechanics of these LASMP [1] and used it to solve a few cases of boundary value problems of interest. In this paper, the developed model is used to solve some other inhomogeneous deformation boundary value problems.


Sign in / Sign up

Export Citation Format

Share Document