scholarly journals Refinement of a 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers

2021 ◽  
Vol 96 ◽  
pp. 107139
Author(s):  
Yingyu Wang ◽  
Jichong Wang ◽  
Xiongqi Peng
2017 ◽  
Vol 705 ◽  
pp. 146-155 ◽  
Author(s):  
Jianming Guo ◽  
Jingbiao Liu ◽  
Zhenqing Wang ◽  
Xiaofu He ◽  
Lifeng Hu ◽  
...  

Author(s):  
Mahesh Khanolkar ◽  
Jaskirat Sodhi ◽  
I. Joga Rao

The constitutive model for the mechanics of crystallizable shape memory polymers (CSMP) has been developed in the past [1, 2]. The model was developed using the theory of multiple natural configurations and has been successful in addressing a diverse class of problems. In this research work, the efficacy of the developed CSMP model is tested by applying it to the torsion of a cylinder, which is an inhomogeneous deformation. The crystallization of the cylinder is studied under two different conditions i.e. crystallization under constant shear and crystallization under constant moment.


Soft Matter ◽  
2021 ◽  
Vol 17 (15) ◽  
pp. 4161-4169
Author(s):  
Sairam Pamulaparthi Venkata ◽  
Kunpeng Cui ◽  
Jingyi Guo ◽  
Alan T. Zehnder ◽  
Jian Ping Gong ◽  
...  

A finite strain nonlinear viscoelastic constitutive model is used to study the uniaxial tension behaviour of a chemical polyampholyte (PA) gel.


2013 ◽  
Vol 3 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Guoguang Niu

The term "shape memory effect" refers to the ability of a material to be deformed and fixed into a temporary shape, and to recover its original, permanent shape upon an external stimulus (1). Shape memory polymers have attracted much interest because of their unique properties, and applied tremendously in medical area, such as biodegradable sutures, actuators, catheters and smart stents (2, 3). Shape memory usually is a thermally induced process, although it can be activated by light illumination, electrical current, magnetic, or electromagnetic field (4-6). During the process, the materials are heated directly or indirectly above their glass transition temperature (Tg) or the melting temperature (Tm) in order to recover the original shape. Non-thermally induced shape memory polymers eliminate the temperature constrains and enable the manipulation of the shape recovered under ambient temperature (7, 8). Herein, we report a novel strategy of water induced shape memory, in which the formation and dissolution of poly(ethylene glycol) (PEG) crystal is utilized for the fixation and recovery of temporary deformation of hydrophilic polymer. This water-induced shape recovery is less sensitive to temperature, of which 95% deformation is fixed in circumstance and over 75% recovery is reached even at 0 oC.


Author(s):  
Shawn A. Chester ◽  
Vikas Srivastava ◽  
Claudio V. Di Leo ◽  
Lallit Anand

The most common shape-memory polymers are those in which the shape-recovery is thermally-induced. A body made from such a material may be subjected to large deformations at an elevated temperature above its glass transition temperature &Vthgr;g. Cooling the deformed body to a temperature below &Vthgr;g under active kinematical constraints fixes the deformed shape of the body. The original shape of the body may be recovered if the material is heated back to a temperature above &Vthgr;g without the kinematical constraints. This phenomenon is known as the shape-memory effect. If the shape recovery is partially constrained, the material exerts a recovery force and the phenomenon is known as constrained-recovery.


Sign in / Sign up

Export Citation Format

Share Document