scholarly journals A representation theorem for abelian groups with no elements of infinitep-height

1967 ◽  
Vol 20 (1) ◽  
pp. 31-33 ◽  
Author(s):  
Delmar Boyer ◽  
Adolf Mader
2017 ◽  
Vol 27 (04) ◽  
pp. 351-360
Author(s):  
Andrey Chekhlov ◽  
Peter Danchev

We define the concept of an [Formula: see text]-co-Hopfian abelian group, which is a nontrivial generalization of the classical notion of a co-Hopfian group. A systematic and comprehensive study of these groups is given in very different ways. Specifically, a representation theorem for [Formula: see text]-co-Hopfian groups is established as well as it is shown that there exists an [Formula: see text]-co-Hopfian group which is not co-Hopfian.


Studia Logica ◽  
2020 ◽  
Vol 108 (6) ◽  
pp. 1161-1206
Author(s):  
Sándor Jenei

AbstractHahn’s embedding theorem asserts that linearly ordered abelian groups embed in some lexicographic product of real groups. Hahn’s theorem is generalized to a class of residuated semigroups in this paper, namely, to odd involutive commutative residuated chains which possess only finitely many idempotent elements. To this end, the partial lexicographic product construction is introduced to construct new odd involutive commutative residuated lattices from a pair of odd involutive commutative residuated lattices, and a representation theorem for odd involutive commutative residuated chains which possess only finitely many idempotent elements, by means of linearly ordered abelian groups and the partial lexicographic product construction is presented.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1946
Author(s):  
Alireza Pourmoslemi ◽  
Tahereh Nazari ◽  
Mehdi Salimi

In this paper, we introduce an inner product on abelian groups and, after investigating the basic properties of the inner product, we first show that each inner product group is a torsion-free abelian normed group. We give examples of such groups and describe the norms induced by such inner products. Among other results, Hilbert groups, midconvex and orthogonal subgroups are presented, and a Riesz representation theorem on divisible Hilbert groups is proved.


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


Sign in / Sign up

Export Citation Format

Share Document