scholarly journals 2P250 Elevation of intracellular cAMP concentration at tips of filopodia alters actin organization in neuronal growth cones(39. Cell motility,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)

2006 ◽  
Vol 46 (supplement2) ◽  
pp. S358
Author(s):  
Makoto Goda ◽  
Ayumu Inutsuka ◽  
Yoshinori Fujiyoshi
2019 ◽  
Vol 30 (15) ◽  
pp. 1817-1833 ◽  
Author(s):  
Yuan Ren ◽  
Yingpei He ◽  
Sherlene Brown ◽  
Erica Zbornik ◽  
Michael J. Mlodzianoski ◽  
...  

Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin–independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.


2003 ◽  
Vol 57 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Erika M. A. Negreiros ◽  
Ana C. M. Leão ◽  
Marcelo F. Santiago ◽  
Rosalia Mendez-Otero

1975 ◽  
Vol 66 (2) ◽  
pp. 392-403 ◽  
Author(s):  
B Storrie

Exposure of CHO-K1 cells in vitro to dibutyryl adenosine cyclic 3',5'-monophosphate (DBcAMP) plus testololactone produces a rapid, reversible antagonism of ligand-induced collection of initially dispersed concanavalin A (Con A) binding sites into a caplike mass. Morphologically, as Con A capping occurs, the cells become less spread and then round completely. With prolonged Con A exposure, cells cultured in either the absence or the presence of DBcAMP plus testololactone cap and round. Capping is blocked by cold treatment and respiratory inhibitors. Colcemid at concentrations greater than 1 muM promotes both Con A capping and cell rounding. Cytochalasin B at similar concentrations inhibits both capping and cell rounding. Treatment of cells with Con A has little effect on intracellular cAMP concentration. Possible mechanisms by which cAMP may modulate the movement of Con A binding sites are discussed.


Sign in / Sign up

Export Citation Format

Share Document