flagellar motor
Recently Published Documents


TOTAL DOCUMENTS

696
(FIVE YEARS 119)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yingxiang Ye ◽  
Panmei Jiang ◽  
Chengyun Huang ◽  
Jingyun Li ◽  
Juan Chen ◽  
...  

Metformin is a biguanide molecule that is widely prescribed to treat type 2 diabetes and metabolic syndrome. Although it is known that metformin promotes the lifespan by altering intestinal microorganism metabolism, how metformin influences and alters the physiological behavior of microorganisms remains unclear. Here we studied the effect of metformin on the behavior alterations of the model organism Escherichia coli (E. coli), including changes in chemotaxis and flagellar motility that plays an important role in bacterial life. It was found that metformin was sensed as a repellent to E. coli by tsr chemoreceptors. Moreover, we investigated the chemotactic response of E. coli cultured with metformin to two typical attractants, glucose and α-methyl-DL-aspartate (MeAsp), finding that metformin prolonged the chemotactic recovery time to the attractants, followed by the recovery time increasing with the concentration of stimulus. Metformin also inhibited the flagellar motility of E. coli including the flagellar motor rotation and cell swimming. The inhibition was due to the reduction of torque generated by the flagellar motor. Our discovery that metformin alters the behavior of chemotaxis and flagellar motility of E. coli could provide potential implications for the effect of metformin on other microorganisms.


2021 ◽  
Author(s):  
Navish Wadhwa ◽  
Alberto Sassi ◽  
Howard C. Berg ◽  
Yuhai Tu

Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in external mechanical environment by adding or removing torque-generating stator units. However, the molecular mechanism for mechanosensitive motor remodeling remains unclear. Here, we induced stator disassembly using electrorotation, followed by the time-dependent assembly of the individual stator units into the motor. From these experiments, we extracted detailed statistics of the dwell times underlying the stochastic dynamics of stator unit binding and unbinding. The dwell time distribution contains multiple timescales, indicating the existence of multiple stator unit states. Based on these results, we propose a minimal model with four stator unit states – two bound states with different unbinding rates, a diffusive unbound state, and a recently described transiently detached state. Our minimal model quantitatively explains multiple features of the experimental data and allows us to determine the transition rates between all four states. Our experiments and modeling point towards an emergent picture for mechano-adaptive remodeling of the bacterial flagellar motor in which torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the two bound states. Furthermore, the binding rate of stator units with the motor has a non-monotonic dependence on the number of bound units, likely due to two counter-acting effects of motor’s rotation on the binding process.


2021 ◽  
Author(s):  
Emily N. Kennedy ◽  
Sarah A. Barr ◽  
Xiaolin Liu ◽  
Luke R. Vass ◽  
Yanan Liu ◽  
...  

Azorhizobium caulinodans is a nitrogen-fixing bacterium that forms root nodules on its host legume, Sesbania rostrata . This agriculturally significant symbiotic relationship is important in lowland rice cultivation, and allows for nitrogen fixation under flood conditions. Chemotaxis plays an important role in bacterial colonization of the rhizosphere. Plant roots release chemical compounds that are sensed by bacteria, triggering chemotaxis along a concentration gradient toward the roots. This gives motile bacteria a significant competitive advantage during root surface colonization. Although plant-associated bacterial genomes often encode multiple chemotaxis systems, A. caulinodans appears to encode only one. The che cluster on the A. caulinodans genome contains cheA , cheW , cheY2 , cheB , and cheR . Two other chemotaxis genes, cheY1 and cheZ , are located independently from the che operon. Both CheY1 and CheY2 are involved in chemotaxis, with CheY1 being the predominant signaling protein. A. caulinodans CheA contains an unusual set of C-terminal domains: a CheW-like/Receiver pair (termed W2-Rec), follows the more common single CheW-like domain. W2-Rec impacts both chemotaxis and CheA function. We found a preference for transfer of phosphoryl groups from CheA to CheY2, rather than to W2-Rec or CheY1, which appears to be involved in flagellar motor binding. Furthermore, we observed increased phosphoryl group stabilities on CheY1 compared to CheY2 or W2-Rec. Finally, CheZ enhanced dephosphorylation of CheY2 substantially more than CheY1, but had no effect on the dephosphorylation rate of W2-Rec. This network of phosphotransfer reactions highlights a previously uncharacterized scheme for regulation of chemotactic responses. IMPORTANCE Chemotaxis allows bacteria to move towards nutrients and away from toxins in their environment. Chemotactic movement provides a competitive advantage over non-specific motion. CheY is an essential mediator of the chemotactic response with phosphorylated and unphosphorylated forms of CheY differentially interacting with the flagellar motor to change swimming behavior. Previously established schemes of CheY dephosphorylation include action of a phosphatase and/or transfer of the phosphoryl group to another receiver domain that acts as a sink. Here, we propose A. caulinodans uses a concerted mechanism in which the Hpt domain of CheA, CheY2, and CheZ function together as a dual sink system to rapidly reset chemotactic signaling. To the best of our knowledge, this mechanism is unlike any that have previously been evaluated. Chemotaxis systems that utilize both receiver and Hpt domains as phosphate sinks likely occur in other bacterial species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tsai-Shun Lin ◽  
Seiji Kojima ◽  
Hajime Fukuoka ◽  
Akihiko Ishijima ◽  
Michio Homma ◽  
...  

Bacterial flagellar motor (BFM) is a large membrane-spanning molecular rotary machine for swimming motility. Torque is generated by the interaction between the rotor and multiple stator units powered by ion-motive force (IMF). The number of bound stator units is dynamically changed in response to the external load and the IMF. However, the detailed dynamics of stator unit exchange process remains unclear. Here, we directly measured the speed changes of sodium-driven chimeric BFMs under fast perfusion of different sodium concentration conditions using computer-controlled, high-throughput microfluidic devices. We found the sodium-driven chimeric BFMs maintained constant speed over a wide range of sodium concentrations by adjusting stator units in compensation to the sodium-motive force (SMF) changes. The BFM has the maximum number of stator units and is most stable at 5 mM sodium concentration rather than higher sodium concentration. Upon rapid exchange from high to low sodium concentration, the number of functional stator units shows a rapidly excessive reduction and then resurrection that is different from predictions of simple absorption model. This may imply the existence of a metastable hidden state of the stator unit during the sudden loss of sodium ions.


2021 ◽  
Author(s):  
Bin Wang ◽  
Guanhua Yue ◽  
Rongjing Zhang ◽  
Junhua Yuan

The flagellar motor drives the rotation of flagellar filaments, propeling the swimming of flagellated bacteria. The maximum torque the motor generates, the stall torque, is a key characteristics of the motor function. Direct measurements of the stall torque carried out three decades ago suffered from large experimental uncertainties, and subsequently there were only indirect measurements. Here, we applied magnetic tweezer to directly measure the stall torque in E. coli. We precisely calibrated the torsional stiffness of the magnetic tweezer, and performed motor resurrection experiments at stall, accomplishing a precise determination of the stall torque per torque-generating unit (stator unit). From our measurements, each stator passes 2 protons per step, indicating a tight coupling between motor rotation and proton flux.


2021 ◽  
Author(s):  
Tatsuro Nishikino ◽  
Yugo Sagara ◽  
Hiroyuki Terashima ◽  
Michio Homma ◽  
Seiji Kojima

Vibrio has a polar flagellum driven by sodium ions for swimming. The force-generating stator unit consists of PomA and PomB. PomA contains four-transmembrane regions and a cytoplasmic domain of approximately 100 residues which interacts with the rotor protein, FliG, to be important for the force generation of rotation. The three-dimensional structure of the stator shows that the cytosolicinterface (CI) helix of PomA is located parallel to the inner membrane. In this study, we investigated the function of CI helix and its role as stator. Systematic proline mutagenesis showed that residues K64, F66, and M67 were important for this function. The mutant stators did not assemble around the rotor. Moreover, the growth defect caused by PomB plug deletion was suppressed by these mutations. We speculate that the mutations affect the structure of the helices extending from TM3 and TM4 and reduce the structural stability of the stator complex. This study suggests that the helices parallel to the inner membrane play important roles in various processes, such as the hoop-like function in securing the stability of the stator complex and the ion conduction pathway, which may lead to the elucidation of the ion permeation and assembly mechanism of the stator.


2021 ◽  
Author(s):  
Norihiro Takekawa ◽  
Tatsuro Nishikino ◽  
Kiyoshiro Hori ◽  
Seiji Kojima ◽  
Katsumi Imada ◽  
...  

2021 ◽  
Author(s):  
Hiroyuki Terashima ◽  
Kiyoshiro Hori ◽  
Kunio Ihara ◽  
Michio Homma ◽  
Seiji Kojima

Abstract The flagellar motor rotates bi-directionally in counter-clockwise (CCW) and clockwise (CW) directions. The motor consists of a stator and a rotor. Recent structural studies have revealed that the stator is composed of a pentameric ring of A subunits and a dimer axis of B subunits. The stator interacts with the rotor through conserved charged and neighboring residues, and the rotational power is generated by their interactions through a gear-like mechanism. The rotational direction is controlled by chemotaxis signaling transmitted to the rotor, with no evidence for the stator being involved. In this study, we found novel mutations that affect the switching of the rotational direction at the putative interaction site of the stator to generate rotational force. Our results highlight a novel aspect of flagellar motor function that appropriate switching of the interaction states between the stator and rotor is critical for controlling the rotational direction.


Author(s):  
Zhengyu Wu ◽  
Maojin Tian ◽  
Rongjing Zhang ◽  
Junhua Yuan

We developed a robust bead assay for studying flagellar motor behavior of Pseudomonas aeruginosa . Using this assay, we studied the dynamics of the two stator systems in the flagellar motor. We found that the two sets of stators function differently, with MotAB stators providing higher total torque, and MotCD stators ensuring more stable motor speed. The motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to mutants with one set of stators. The bead assay we developed here can be further used to study P. aeruginosa chemotaxis at the level of single cell using the motor behavior as the chemotaxis output. Importance Cells of Pseudomonas aeruginosa possess a single polar flagellum, driven by a rotatory motor powered by two sets of torque-generating units (stators). We developed a robust bead assay for studying the behavior of the flagellar motor in P. aeruginosa , by attaching a microsphere to shortened flagellar filament and using it as an indicator of motor rotation. Using this assay, we revealed the dynamics of the two stator systems in the flagellar motor, and found that the motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to mutants with one set of stators.


Sign in / Sign up

Export Citation Format

Share Document