subunit protein
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 25)

H-INDEX

41
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Abhishek Phatarphekar ◽  
GEC Vidyadhar Reddy ◽  
Abhiram Gokhale ◽  
Gopala Karanam ◽  
Pushpa Kuchroo ◽  
...  

The COVID-19 pandemic has spurred an unprecedented movement to develop safe and effective vaccines against the SARS-CoV-2 virus to immunize the global population. The first set of vaccine candidates that received emergency use authorization targeted the spike (S) glycoprotein of the SARS-CoV-2 virus that enables virus entry into cells via the receptor binding domain (RBD). Recently, multiple variants of SARS-CoV-2 have emerged with mutations in S protein and the ability to evade neutralizing antibodies in vaccinated individuals. We have developed a dual RBD and nucleocapsid (N) subunit protein vaccine candidate named RelCoVax® through heterologous expression in mammalian cells (RBD) and E. coli (N). The RelCoVax® formulation containing a combination of aluminum hydroxide (alum) and a synthetic CpG oligonucleotide as adjuvants elicited high antibody titers against RBD and N proteins in mice after a prime and boost dose regimen administered 2 weeks apart. The vaccine also stimulated cellular immune responses with a potential Th1 bias as evidenced by increased IFN-γ release by splenocytes from immunized mice upon antigen exposure particularly N protein. Finally, the serum of mice immunized with RelCoVax® demonstrated the ability to neutralize two different SARS-CoV-2 viral strains in vitro including the Delta strain that has become dominant in many regions of the world and can evade vaccine induced neutralizing antibodies. These results warrant further evaluation of RelCoVax® through advanced studies and contribute towards enhancing our understanding of multicomponent subunit vaccine candidates against SARS-CoV-2.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010170
Author(s):  
Dan Wang ◽  
Xinxin Zhang ◽  
Liwen Yin ◽  
Qi Liu ◽  
Zhaoli Yu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


2021 ◽  
Author(s):  
Chia En Lien ◽  
Yi-Jiun Lin ◽  
Yi-Ling Lin ◽  
I-Chen Tai ◽  
Charles Chen

A post-hoc analysis of the phase 2 data was performed for the SARS-COV-2 subunit protein vaccine MVC-COV1901. Anti-spike IgG, neutralization assays with live virus and pseudovirus were used to demonstrate age-dependent vaccine-induced antibody response to the vaccine. Results showed that an association exists between age and immune responses to the vaccine, providing further support for the need of booster shots, especially for the older age groups.


Author(s):  
Hui-Min Ho ◽  
Chiung-Yi Huang ◽  
Yu-Jhen Cheng ◽  
Kuan-Yin Shen ◽  
Tsai-Teng Tzeng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 27 (S1) ◽  
pp. 280-282
Author(s):  
Juan Sanchez ◽  
Daniel Parrell ◽  
Alba Gonzalez-Rivera ◽  
Nicoleta Ploscariu ◽  
Katrina Forest ◽  
...  

2021 ◽  
Author(s):  
Yunmeng Chu ◽  
Shun Guo ◽  
Dachao Cui ◽  
Xiongfei Fu ◽  
Yingfei Ma

Abstract Backgroud: Bacteriophage (phage) is the most abundant and diverse biological entity on the Earth. This makes it a challenge to identify and annotate phage genomes efficiently on a large scale.Results: Portal (portal protein), TerL (large terminase subunit protein), and TerS (small terminase subunit protein) are the three specific proteins of the tailed phage. Here, we develop a CNN (convolutional neural network)-based framework, DeephageTP, to identify the three protein sequences encoded by the metagenome data. The framework takes one-hot encoding data of the original protein sequences as the input and extracts the predictive features in the process of modeling. To overcome the false positive problem, a cutoff-loss-value strategy is introduced based on the distributions of the loss values of the sequences within the same category. The proposed model with the set of cutoff-loss-values demonstrates high performance in terms of Precision in identifying TerL and Portal sequences (94% and 90%, respectively) from the mimic metagenomic dataset. Finally, we tested the efficacy of the framework using three real metagenomic datasets, and the result shows that compared to the conventional alignment-based methods, our proposed framework has a particular advantage in identifying the novel phage-specific protein sequences of portal and TerL with remote homology to their counterparts in the training dataset.Conclusions: In summary, our study for the first time develops a CNN-based framework for identifying the phage-specific protein sequences with high complexity and low conservation, and this framework will help us find novel phages in metagenomic sequencing data. The DeephageTP is available at https://github.com/chuym726/DeephageTP.


2021 ◽  
Vol 42 (1) ◽  
pp. 14-23
Author(s):  
B.B. Patnaik ◽  
◽  
S. Baliarsingh ◽  
S. Sahoo ◽  
J.M. Chung ◽  
...  

Aim: Identification of full-length ORF of hemocyanin subunit-1 (Mr_HC_1) from the hepatopancreas transcriptome of freshwater prawn, Macrobrachium rosenbergii infected with Vibrio harveyi and characterization of its sequence and structure by in silico tools and softwares. Methodology: Illumina HiSeq and de novo assembled unigenes were scanned against PANM-DB to screen Mr_HC_1. FGENESH gene prediction and SMART programs were used to predict the ORF region. Subsequently, Clustal X2 and MEGA in-silico tools were used to understand the sequence relatedness and evolutionary status of Mr_HC_1. Structural prediction was performed by SWISS-MODEL and Ramachandran plot modeling programs Results: The full-length ORF was 1983 bp in length encoding a polypeptide of 661 amino acid residues. Mr_HC_1 showed a putative signal peptide of 21 amino acid residues at the N-terminus and three hemocyanin domains. Homology analysis of Mr_HC_1 amino acid sequence confirms maximum identity to M. nipponense hemocyanin subunit-1 (Mn_HC_1). Phylogenetic analysis showed that Mr_HC_1 is more closely related to the hemocyanin γ-type subunit of freshwater shrimps. Homology modeling of Mr_HC_1 showed homo-hexameric protein containing 12 copper ions. With a QMEAN score of -3.33 and model-template sequence identity of 59.15%, the predicted model of Mr_HC_1 is convincing Interpretation: This study characterizes the hemocyanin γ-type subunit protein of freshwater prawn, M. rosenbergii for future studies on host defense mechanisms.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1643
Author(s):  
Minu Chaudhuri ◽  
Chauncey Darden ◽  
Fidel Soto Gonzalez ◽  
Ujjal K. Singha ◽  
Linda Quinones ◽  
...  

The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.


Sign in / Sign up

Export Citation Format

Share Document