scholarly journals 3P202 Single-molecule imaging analysis of heterotrimeric G protein dynamics in Dictyostelium cells(Cell biological problems- adhesion, motility, cytoskeleton, signaling, and membrane,Poster Presentations)

2007 ◽  
Vol 47 (supplement) ◽  
pp. S253
Author(s):  
Yukihiro Miyanaga ◽  
Toshio Yanagida ◽  
Masahiro Ueda
2017 ◽  
Author(s):  
Masataka Yanagawa ◽  
Michio Hiroshima ◽  
Yuichi Togashi ◽  
Mitsuhiro Abe ◽  
Takahiro Yamashita ◽  
...  

AbstractG protein-coupled receptors (GPCRs) are major drug targets and have high potential for drug discovery. The development of a method for measuring the activities of GPCRs is essential for pharmacology and drug screening. However, it is difficult to measure the effects of a drug by monitoring the receptor on the cell surface, and changes in the concentrations of downstream signaling molecules, which depend on signaling pathway selectivity of the receptor, are used as an index of the receptor activity. Here, we show that single-molecule imaging analysis provides an alternative method for assessing ligand effects on GPCR. We monitored the dynamics of the diffusion of metabotropic glutamate receptor 3 (mGluR3), a class C GPCR, under various ligand conditions by using total internal reflection fluorescence microscopy (TIRFM). The single-molecule tracking analysis demonstrates that changes in the average diffusion coefficient of mGluR3 quantitatively reflect the ligand-dependent activity. Then, we reveal that the diffusion of receptor molecules is altered by the common physiological events associated with GPCRs, including G protein binding or accumulation in clathrin-coated pits, by inhibition experiments and dual-color single-molecule imaging analysis. We also confirm the generality of agonist-induced diffusion change in class A and B GPCRs, demonstrating that the diffusion coefficient is a good index for estimating the ligand effects on many GPCRs regardless of the phylogenetic groups, chemical properties of the ligands, and G protein-coupling selectivity.One Sentence Summary: Single-molecule imaging for evaluating ligand effects on GPCRs by monitoring the diffusion dynamics on the cell surface.


2018 ◽  
Vol 11 (548) ◽  
pp. eaao1917 ◽  
Author(s):  
Masataka Yanagawa ◽  
Michio Hiroshima ◽  
Yuichi Togashi ◽  
Mitsuhiro Abe ◽  
Takahiro Yamashita ◽  
...  

G protein–coupled receptors (GPCRs) are major drug targets. Developing a method to measure the activities of GPCRs is essential for pharmacology and drug screening. However, it is difficult to measure the effects of a drug by monitoring the receptor on the cell surface; thus, changes in the concentrations of downstream signaling molecules, which depend on the signaling pathway selectivity of the receptor, are often used as an index of receptor activity. We show that single-molecule imaging analysis provides an alternative method for assessing the effects of ligands on GPCRs. Using total internal reflection fluorescence microscopy (TIRFM), we monitored the dynamics of the diffusion of metabotropic glutamate receptor 3 (mGluR3), a class C GPCR, under various ligand conditions. Our single-molecule tracking analysis demonstrated that increases and decreases in the average diffusion coefficient of mGluR3 quantitatively reflected the ligand-dependent inactivation and activation of receptors, respectively. Through experiments with inhibitors and dual-color single-molecule imaging analysis, we found that the diffusion of receptor molecules was altered by common physiological events associated with GPCRs, including G protein binding, and receptor accumulation in clathrin-coated pits. We also confirmed that agonist also decreased the average diffusion coefficient for class A and B GPCRs, demonstrating that this parameter is a good index for estimating ligand effects on many GPCRs regardless of their phylogenetic groups, the chemical properties of the ligands, or G protein–coupling selectivity.


2016 ◽  
Vol 291 (43) ◽  
pp. 22404-22413 ◽  
Author(s):  
Akihiko Nakamura ◽  
Tomoyuki Tasaki ◽  
Daiki Ishiwata ◽  
Mayuko Yamamoto ◽  
Yasuko Okuni ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdullah O. Khan ◽  
Carl W. White ◽  
Jeremy A. Pike ◽  
Jack Yule ◽  
Alexandre Slater ◽  
...  

Abstract The use of CRISPR-Cas9 genome editing to introduce endogenously expressed tags has the potential to address a number of the classical limitations of single molecule localisation microscopy. In this work we present the first systematic comparison of inserts introduced through CRISPR-knock in, with the aim of optimising this approach for single molecule imaging. We show that more highly monomeric and codon optimised variants of mEos result in improved expression at the TubA1B locus, despite the use of identical guides, homology templates, and selection strategies. We apply this approach to target the G protein-coupled receptor (GPCR) CXCR4 and show a further insert dependent effect on expression and protein function. Finally, we show that compared to over-expressed CXCR4, endogenously labelled samples allow for accurate single molecule quantification on ligand treatment. This suggests that despite the complications evident in CRISPR mediated labelling, the development of CRISPR-PALM has substantial quantitative benefits.


2004 ◽  
Vol 101 (19) ◽  
pp. 7317-7322 ◽  
Author(s):  
H. Murakoshi ◽  
R. Iino ◽  
T. Kobayashi ◽  
T. Fujiwara ◽  
C. Ohshima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document