Bayesian Approximation Techniques for Gompertz Distribution

Author(s):  
Humaira Sultan
2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Uzma Jan ◽  
S. P. Ahmad

The Bayesian estimation of the scale parameter of a Laplace Distribution is obtained using two approximation techniques, like Normal approximation and Tierney and Kadane (T-K) approximation, under different informative priors.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Antonino Laudani ◽  
Francesco Riganti Fulginei ◽  
Alessandro Salvini ◽  
Gabriele Maria Lozito ◽  
Salvatore Coco

In recent years several numerical methods have been proposed to identify the five-parameter model of photovoltaic panels from manufacturer datasheets also by introducing simplification or approximation techniques. In this paper we present a fast and accurate procedure for obtaining the parameters of the five-parameter model by starting from its reduced form. The procedure allows characterizing, in few seconds, thousands of photovoltaic panels present on the standard databases. It introduces and takes advantage of further important mathematical considerations without any model simplifications or data approximations. In particular the five parameters are divided in two groups, independent and dependent parameters, in order to reduce the dimensions of the search space. The partitioning of the parameters provides a strong advantage in terms of convergence, computational costs, and execution time of the present approach. Validations on thousands of photovoltaic panels are presented that show how it is possible to make easy and efficient the extraction process of the five parameters, without taking care of choosing a specific solver algorithm but simply by using any deterministic optimization/minimization technique.


Author(s):  
Stephan Schlupkothen ◽  
Gerd Ascheid

Abstract The localization of multiple wireless agents via, for example, distance and/or bearing measurements is challenging, particularly if relying on beacon-to-agent measurements alone is insufficient to guarantee accurate localization. In these cases, agent-to-agent measurements also need to be considered to improve the localization quality. In the context of particle filtering, the computational complexity of tracking many wireless agents is high when relying on conventional schemes. This is because in such schemes, all agents’ states are estimated simultaneously using a single filter. To overcome this problem, the concept of multiple particle filtering (MPF), in which an individual filter is used for each agent, has been proposed in the literature. However, due to the necessity of considering agent-to-agent measurements, additional effort is required to derive information on each individual filter from the available likelihoods. This is necessary because the distance and bearing measurements naturally depend on the states of two agents, which, in MPF, are estimated by two separate filters. Because the required likelihood cannot be analytically derived in general, an approximation is needed. To this end, this work extends current state-of-the-art likelihood approximation techniques based on Gaussian approximation under the assumption that the number of agents to be tracked is fixed and known. Moreover, a novel likelihood approximation method is proposed that enables efficient and accurate tracking. The simulations show that the proposed method achieves up to 22% higher accuracy with the same computational complexity as that of existing methods. Thus, efficient and accurate tracking of wireless agents is achieved.


Sign in / Sign up

Export Citation Format

Share Document