scholarly journals Multiple particle filtering for tracking wireless agents via Monte Carlo likelihood approximation

Author(s):  
Stephan Schlupkothen ◽  
Gerd Ascheid

Abstract The localization of multiple wireless agents via, for example, distance and/or bearing measurements is challenging, particularly if relying on beacon-to-agent measurements alone is insufficient to guarantee accurate localization. In these cases, agent-to-agent measurements also need to be considered to improve the localization quality. In the context of particle filtering, the computational complexity of tracking many wireless agents is high when relying on conventional schemes. This is because in such schemes, all agents’ states are estimated simultaneously using a single filter. To overcome this problem, the concept of multiple particle filtering (MPF), in which an individual filter is used for each agent, has been proposed in the literature. However, due to the necessity of considering agent-to-agent measurements, additional effort is required to derive information on each individual filter from the available likelihoods. This is necessary because the distance and bearing measurements naturally depend on the states of two agents, which, in MPF, are estimated by two separate filters. Because the required likelihood cannot be analytically derived in general, an approximation is needed. To this end, this work extends current state-of-the-art likelihood approximation techniques based on Gaussian approximation under the assumption that the number of agents to be tracked is fixed and known. Moreover, a novel likelihood approximation method is proposed that enables efficient and accurate tracking. The simulations show that the proposed method achieves up to 22% higher accuracy with the same computational complexity as that of existing methods. Thus, efficient and accurate tracking of wireless agents is achieved.

Acta Numerica ◽  
2014 ◽  
Vol 23 ◽  
pp. 369-520 ◽  
Author(s):  
G. Dimarco ◽  
L. Pareschi

In this survey we consider the development and mathematical analysis of numerical methods for kinetic partial differential equations. Kinetic equations represent a way of describing the time evolution of a system consisting of a large number of particles. Due to the high number of dimensions and their intrinsic physical properties, the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity. Here we review the basic numerical techniques for dealing with such equations, including the case of semi-Lagrangian methods, discrete-velocity models and spectral methods. In addition we give an overview of the current state of the art of numerical methods for kinetic equations. This covers the derivation of fast algorithms, the notion of asymptotic-preserving methods and the construction of hybrid schemes.


2008 ◽  
Vol 23 (3) ◽  
pp. 227-260 ◽  
Author(s):  
DANIEL BRYANT ◽  
PAUL KRAUSE

AbstractThis article surveys existing practical implementations of both defeasible and argumentation-based reasoning engines and associated literature. We aim to summarize the current state of the art in the research area, show that there are many similiarities and connections between the various implementations and also highlight the differences regarding evaluation goals and strategies. An important goal of this paper is to argue for the need for well-designed empirical evaluations, as well as formal complexity analysis, in order to justify the practical applicability of a reasoning engine. There are indeed many challenges to be faced in developing implementations of argumentation. Not least of these is the inherent computational complexity of the formal models. We cover some of the ways these challenges have been addressed, and provide pointers for future directions in realizing the goal of practical argumentation.


2017 ◽  
Vol 26 (02) ◽  
pp. 1750002 ◽  
Author(s):  
Federico Cerutti ◽  
Mauro Vallati ◽  
Massimiliano Giacomin

Dung’s argumentation frameworks are adopted in a variety of applications, from argument-mining, to intelligence analysis and legal reasoning. Despite this broad spectrum of already existing applications, the mostly adopted solver—in virtue of its simplicity—is far from being comparable to the current state-of-the-art solvers. On the other hand, most of the current state-of-the-art solvers are far too complicated to be deployed in real-world settings. In this paper we provide and extensive description of jArgSemSAT, a Java re-implementation of ArgSemSAT. ArgSemSAT represents the best single solver for argumentation semantics with the highest level of computational complexity. We show that jArgSemSAT can be easily integrated in existing argumentation systems (1) as an off-the-shelf, standalone, library; (2) as a Tweety compatible library; and (3) as a fast and robust web service freely available on the Web. Our large experimental analysis shows that despite being written in Java, jArgSemSAT would have scored in most of the cases among the three bests solvers for the two semantics with highest computational complexity “Stable and Preferred” in the last competition on computational models of argumentation.


Author(s):  
Milica Maksimović ◽  
Patrick Aichroth ◽  
Luca Cuccovillo

AbstractIn this paper, we describe various application scenarios for archive management, broadcast/stream analysis, media search and media forensics which require the detection and accurate localization of unknown partial audio matches within items and datasets. We explain why they cannot be addressed with state-of-the-art matching approaches based on fingerprinting, and propose a new partial matching algorithm which can satisfy the relevant requirements. We propose two distinct requirement sets and hence two variants / settings for our proposed approach: One focusing on lower time granularity and hence lower computational complexity, to be able to deal with large datasets, and one focusing on fine-grain analysis for small datasets and individual items. Both variants are tested using distinct evaluation sets and methodologies and compared with a popular audio matching algorithm, thereby demonstrating that the proposed algorithm achieves convincing performance for the relevant application scenarios beyond the current state-of-the-art.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro

Sign in / Sign up

Export Citation Format

Share Document