scholarly journals Static and Dynamic Analysis of Multistory RC Building with Various Heights in High Seismic Zone

Author(s):  
Ghusen Al-Kafri ◽  
Md. Shahnewaz Sarkar ◽  
Md. Shaizuddin Sarkar
Author(s):  
Arati Avinash Sabale

Vibration of ground is the main cause of earthquake damage to building structures. There are many factors responsible for the strength of earthquake shaking at a site including the earthquake's magnitude, the site's proximity to the fault, the local geology, and the soil type. The natural disasters have been fast recurring all over the world causing great concern and damage to man and their properties. Among these disasters Earthquake is an endogenous natural disaster, which occurs suddenly without any warning. The vast devastation of engineering systems and facilities during the past earthquakes has exposed serious deficiencies in the prevalent design and construction. Shear wall is one of the most commonly used lateral load resisting in high rise buildings. Shear wall can be used to simultaneously resist large horizontal load and support gravity load. In the study, one tall RCC building of 13 stories is assumed to be situated in seismic zone V is analysed using two methods (Static and Dynamic Analysis). The share walls are taken at different position of building. The comparison of the different shear wall models is studied in this work against the different parameters like time period, bending moment, shear force, storey drift, displacement


Author(s):  
S. K. Singh ◽  
A. Banerjee ◽  
R. K. Varma ◽  
S. Adhikari ◽  
S. Das

2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


2002 ◽  
Vol 72 (6-7) ◽  
pp. 483-497 ◽  
Author(s):  
K. G. Tsepoura ◽  
S. Papargyri-Beskou ◽  
D. Polyzos ◽  
D. E. Beskos

2009 ◽  
Vol 2 (1/2/3/4/5/6) ◽  
pp. 251 ◽  
Author(s):  
K. Prabhakaran Nair ◽  
Mohammed Shabbir Ahmed ◽  
Saed Thamer Al qahtani

Sign in / Sign up

Export Citation Format

Share Document