rc building
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 160)

H-INDEX

21
(FIVE YEARS 4)

YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 192-205
Author(s):  
N Raghuraman ◽  

RC building elements of Reinforcing and upgrading is essential to extend its maintenance time, to overcome first structural limitations, and to control the consequence of building construction or design flaws. The RC constructions are reinforced by using the FRP-fiber reinforced polymer. This study utilizes the FRP in concrete structures for instance a Jute, coir, and Sisal is explored for its reliability in improving ductility and strength related structural performance. FRP structural response of the model parameters is studied by measuring the numerical and experimental terms, for instance, Ductility, Deflection, Tensile-Strength, and Compression-Strength. The quality of the sample specimens is tested by using the Fuzzy Neural Network (FNN) system. At this time, compared with existing jobs, the propounded Fuzzy Neural Network model accomplishes the best presentation regarding all boundaries for the fiberreinforced specimen over different stacked conditions


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Marsed Leti

Albania has suffered from major earthquakes in the past century that have caused varying levels of damage to buildings. As a result of the number of damaged buildings and loss of life, attention has focused mostly on the poor performance of reinforced concrete and masonry structures in low and mid-rise buildings. This paper presents the results of a reconnaissance visits to the disaster-stricken area in the Durrës region in Albania and covers many zones in the region where historical and modern buildings suffered serious structural damage or collapses during the November 26, 2019, Durrës Earthquake. Special emphasis was placed on masonry and RC buildings, since the damage level was high in these buildings. The consequences of the Durrës earthquake are important for similar masonry and RC building stock in other seismically vulnerable European cities. Regularity of the structural system, quality of the material utilized, the distribution of mass and stiffness through the building, the ratio of openings on masonry walls and diaphragm stiffness have a crucial influence on the structural response. Inappropriate interventions led to serious damage or collapses, resulting in casualties. Examples of numerous damage types, as witnessed during the site visits to the affected region are presented, along with technically explanation of causes for the damages.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2476-2498
Author(s):  
André Furtado ◽  
Hugo Rodrigues ◽  
António Arêde

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 521
Author(s):  
Paolino Cassese ◽  
Costantino Menna ◽  
Antonio Occhiuzzi ◽  
Domenico Asprone

Reinforced concrete (RC) structures built before the 1970 represent a large portion of the existing European buildings stock. Their obsolescence in terms of design criteria, materials, and functionality is becoming a critical issue for guaranteeing adequate compliance with current structural codes. Recently, a new jacketing system based on the use of high-performance fiber-reinforced concrete (HPFRC) has been introduced for strengthening existing RC building members. Despite the promising aspects of the HPFRC jacketing technique, currently, a comprehensive and systematic technical framework for its implementation is still missing. In this paper, the experimental performance of RC columns strengthened with the HPFRC jacket subjected to pure axial load and combined axial load-bending moment uncoupled from shear is investigated. The test outcomes confirmed a significant improvement of the structural performance for the strengthened columns, especially for higher values of eccentricity. Finally, a standard-based practice-oriented analytical tool for designing retrofit interventions using the HPFRC jacket is proposed. The comparison between the calculated and experimental results revealed a satisfactory prediction capability.


2021 ◽  
Vol 889 (1) ◽  
pp. 012043
Author(s):  
Kamalroop Kaur ◽  
Balwinder Singh

Abstract Behavior of multistory structures during solid seismic tremor relies on the underlying configurations.Irregularities are not avoidable in development of structures in light of the fact that the space accessible for building the structures are restricted consequently the structure with irregularity is built up more, because of these abnormalities in the structure damages are more during earthquake.The effect of lateral load as wind/Earthquakes influences the performance of these constructions significantly. For the stability against seismic forces of multi-celebrated structure, there is need to investigation of seismic examination to plan earthquake opposition structures. It was tracked down that principle reason for failure of RC building is due to irregular circulations of load, plan of the structures, strength, stiffness. In this paper the correlation of seismic behavior of G+15 story structures having plan irregularities was finished utilizing ETAB programming. For this reason different multi-storey structure plans are viewed as that are regular plan without shear wall, regular plan with shear wall, L shape without shear wall, L shape with shear wall, irregular plan of C shape without shear wall, irregular plan of C shape with shear wall structures. For the correlation, boundaries taken are displacement, story float and storey shear. Every one of the six structures was dissected for zone V. The fundamental objective is to contemplate the behavior of both symmetric and Asymmetric structures during seismic tremor having abnormalities in plan but the plan area is same. The another aim of the study is to examine the taken boundaries like storey shear, storey displacements, Maximum storey float of all structures that are build in this paper during seismic tremor and also to study the impact of shear wall on the behavior of different structures.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012012
Author(s):  
Malek Abdullah ◽  
Preeti Kulkarni

Abstract The current work investigates the behavior of a multi-story RC building under seismic load using pushover analysis, employing two (codes IS code and ACI code) where the special moment resistant frame (SMRF) building is located in a medium-seismicity region of India in Pune City. The G+8 to G+20 storeys of the RC buildings have been chosen for this purpose. The structural analysis programmed SAP2000.V20 was used to create a finite element model of the structure. The different models (5 models) of RC buildings were initially designed to resist seismic loads using the responses spectrum analysis method to determine the RC building’s characteristics. Pushover analysis is used to predict potential weak areas in the structure by tracking the sequence of damages of each and every member in the structure and determining the weak joints (critical joints) in the RC building. and compare the two codes (IS code and ACI code)


Sign in / Sign up

Export Citation Format

Share Document