scholarly journals Induced density correlations in a sonic black hole condensate

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Yi-Hsieh Wang ◽  
Ted Jacobson ◽  
Mark Edwards ◽  
Charles Clark

Analog black/white hole pairs, consisting of a region of supersonic flow, have been achieved in a recent experiment by J. Steinhauer using an elongated Bose-Einstein condensate. A growing standing density wave, and a checkerboard feature in the density-density correlation function, were observed in the supersonic region. We model the density-density correlation function, taking into account both quantum fluctuations and the shot-to-shot variation of atom number normally present in ultracold-atom experiments. We find that quantum fluctuations alone produce some, but not all, of the features of the correlation function, whereas atom-number fluctuation alone can produce all the observed features, and agreement is best when both are included. In both cases, the density-density correlation is not intrinsic to the fluctuations, but rather is induced by modulation of the standing wave caused by the fluctuations.

2012 ◽  
Vol 26 (29) ◽  
pp. 1250146 ◽  
Author(s):  
BHASKAR SEN GUPTA ◽  
SHANKAR P. DAS

The renormalized dynamics described by the equations of nonlinear fluctuating hydrodynamics (NFH) treated at one loop order gives rise to the basic model of the mode coupling theory (MCT). We investigate here by analyzing the density correlation function, a crucial prediction of ideal MCT, namely the validity of the multi step relaxation scenario. The equilibrium density correlation function is calculated here from the direct solutions of NFH equations for a hard sphere system. We make first detailed investigation for the robustness of the correlation functions obtained from the numerical solutions by varying the size of the grid. For an optimum choice of grid size we analyze the decay of the density correlation function to identify the multi-step relaxation process. Weak signatures of two step power law relaxation is seen with exponents which do not match predictions from the one loop MCT. For the final relaxation stretched exponential (KWW) behavior is seen and the relaxation time grows with increase of density. But apparent power law divergences indicate a critical packing fraction much higher than the corresponding MCT predictions for a hard sphere fluid.


1988 ◽  
Vol 196 (1-3) ◽  
pp. 487-493 ◽  
Author(s):  
R.Q. Yang ◽  
X.J. Lu ◽  
X.L. Lei ◽  
L.M. Xie ◽  
C.H. Tsai

Sign in / Sign up

Export Citation Format

Share Document