scholarly journals Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility

2010 ◽  
pp. 337 ◽  
Author(s):  
Liao Juan
Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1339 ◽  
Author(s):  
Xiaohui Ni ◽  
Jinru Wang ◽  
Yiying Yue ◽  
Wanli Cheng ◽  
Dong Wang ◽  
...  

The agglomeration of silver nanoparticles (AgNPs) results in poor antibacterial performance, and the accumulation of silver in the human body threatens human health. Preparing a matrix is a technique worth considering as it not only prevents the aggregation of AgNPs but also reduces deposition of AgNPs in the human body. In this paper, carboxy-cellulose nanocrystals (CCNC) were prepared by a simple one-step acid hydrolysis method. Chito-oligosaccharides (CSos) were grafted onto the surface of CCNC to form CSos-CCNC composite nanoparticles. CCNC and CSos-CCNC were used as stabilizers for deposing AgNPs and two types of complexes—AgNPs-CCNC and AgNPs-CSos-CCNC—were obtained, respectively. The influence of the two stabilizer matrices—CCNC and CSos-CCNC—on the morphology, thermal behavior, crystal structure, antibacterial activity, and cell compatibility of AgNPs-CCNC and AgNPs-CSos-CCNC were examined. The results showed that the AgNPs deposited on the CSos-CCNC surface had a smaller average diameter and a narrower particle size distribution compared with the ones deposited on CCNC. The thermal stability of AgNPs-CSos-CCNC was better than that of AgNPs-CCNC. AgNPs did not affect the crystalline structure of CCNC and CSos-CCNC. The antibacterial activity of AgNPs-CSos-CCNC was better than that of AgNPs-CCNC based on antibacterial studies using Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae. The cytotoxicity of AgNPs-CSos-CCNC was remarkably lower than that of AgNPs-CCNC.


2004 ◽  
Vol 83 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Y. Shibata ◽  
H. Kawai ◽  
H. Yamamoto ◽  
T. Igarashi ◽  
T. Miyazaki

Implant surfaces should be modified to achieve excellent cell compatibility as well as antibacterial activity. Our previous study demonstrated that titanium plates anodized by being discharged in NaCl (Ti-Cl) exhibited high antibacterial activity. Since Ti-Cl was prepared with a NaCl solution, we hypothesized that Ti-Cl would exhibit low toxicity toward cells. The aims of this study were to characterize the surface of Ti-Cl and investigate the cell compatibility (MC3T3-E1 and L929 cells) of Ti-Cl. The results demonstrated that, since the TiCl3 formed on the Ti-Cl surface was hydrolyzed into HCl, HClO, and TiOH after immersion in pure distilled water, TiCl3 contributed to the antibacterial activity of Ti-Cl. On the other hand, TiO formed on the Ti-Cl surface enhanced cell extension and cell growth through a larger adsorption of fibronectin compared with the pure titanium control. These findings suggest that antibacterial titanium is a promising material for use in dental implant systems.


2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
S Lehmann ◽  
MS Wong ◽  
K Zehr ◽  
BJ DeGuzman ◽  
HE Garrett ◽  
...  
Keyword(s):  

Author(s):  
S. Rezaei-Zarchi ◽  
M. Taghavi-Foumani ◽  
S. Razavi Sheshdeh ◽  
M. Negahdary ◽  
G. Rahimi

Sign in / Sign up

Export Citation Format

Share Document