scholarly journals Comparison of Machine Learning Methods for Electricity Demand Forecasting in Bosnia and Herzegovina

Author(s):  
Galib Sikiric ◽  
Samir Avdakovic ◽  
Abdulhamit Subasi
Author(s):  
Rodrigo Porteiro ◽  
Luis Hernández-Callejo ◽  
Sergio Nesmachnow

This article presents electricity demand forecasting models for industrial and residential facilities, developed using ensemble machine learning strategies. Short term electricity demand forecasting is beneficial for both consumers and suppliers, as it allows improving energy efficiency policies and the rational use of resources. Computational intelligence models are developed for day-ahead electricity demand forecasting. An ensemble strategy is applied to build the day-ahead forecasting model based on several one-hour models. Three steps of data preprocessing are carried out, including treating missing values, removing outliers, and standardization. Feature extraction is performed to reduce overfitting, reducing the training time and improving the accuracy. The best model is optimized using grid search strategies on hyperparameter space. Then, an ensemble of 24 instances is generated to build the complete day-ahead forecasting model. Considering the computational complexity of the applied techniques, they are developed and evaluated on the National Supercomputing Center (Cluster-UY), Uruguay. Three different real data sets are used for evaluation: an industrial park in Burgos (Spain), the total electricity demand for Uruguay, and demand from a distribution substation in Montevideo (Uruguay). Standard performance metrics are applied to evaluate the proposed models. The main results indicate that the best day ahead model based on ExtraTreesRegressor has a mean absolute percentage error of 2:55% on industrial data, 5:17% on total consumption data and 9:09% on substation data. 


Author(s):  
Evangelos Spiliotis ◽  
Spyros Makridakis ◽  
Artemios-Anargyros Semenoglou ◽  
Vassilios Assimakopoulos

2013 ◽  
Vol 811 ◽  
pp. 401-406
Author(s):  
Dusan Marcek

We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods that use autocorrelation feature selection and BackPropagation Neural Networks, Linear Regression as prediction algorithms outperform the statistical methods Exponential Smoothing and also a number of baselines. We analyze the effect of day time on the prediction error and show that there are time-intervals associated with higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for construction a hybrid prediction model that achieved lower prediction error. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction results than classic one. The aspect of increased transparency of networks through genetic evolution development features and granular computation is another essential topic promoted by knowledge discovery in large databases.


Sign in / Sign up

Export Citation Format

Share Document