scholarly journals Confocal Fluorescence Microscopy and Kinetics of the Cr3+-Chromate Ion Oxidation Equilibria at the Solid Liquid Interface

Author(s):  
Gizelle Almerindo ◽  
Anika Gaborim ◽  
Lucas Nicolazi ◽  
Muhammad Idrees ◽  
Faruk Nome ◽  
...  
2021 ◽  
Author(s):  
Wei Zhang ◽  
Qiang Wu ◽  
Ziqi Zeng ◽  
Chuang Yu ◽  
Shijie Cheng ◽  
...  

A soluble organoselenide compound, phenyl diselenide (PDSe), is employed as a soluble electrolyte additive to enhance the kinetics of sulfurized polyacrylonitrile cathode, in which radical exchange in the solid-liquid interface...


MRS Advances ◽  
2016 ◽  
Vol 1 (42) ◽  
pp. 2867-2872
Author(s):  
Eric Choudhary ◽  
Jeyavel Velmurugan ◽  
James M. Marr ◽  
James A. Liddle ◽  
Veronika Szalai

ABSTRACTHeterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization.1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments,1 it is important to perform measurements in operando. Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.


1991 ◽  
Vol 248 ◽  
Author(s):  
H. Terashima ◽  
K. Kanehashi ◽  
N. Imai

AbstractThe kinetics of adsorption of polyvinyl acetate at the solid-liquid interface has been studied to verify the correctness of a description in a paper [Peterson and Kwel, J.Phys.Chem. 65, 1330(1961)] : “the initial rate of adsorption of polyvinyl acetate was found to be rapid”. This is inconsistent with the widely accepted knowledge that polymer adsorption is a slow process. Polyvinyl acetate (Mw = 124,800) was adsorbed from benzene (0.001 to 0.05 mg ml−1) onto mica at 295.5 K. The adsorbed amount per unit area i.e. adsorbance has been determined as a function of incubation time using an ultramicrobalance [Mettler UM3]. The results obtained show that the adsorbance rises rapidly at the beginning of adsorption and then reaches an apparent plateau, where the adsorbance still increases at negligibly slow rate in comparison with the initial rate. The Peterson and Kwei's results have been confirmed to be correct. We regarded the plateau as an adsorption equilibrium and constructed adsorption isotherms, in which the Peterson and Kwei's results were incorporated. These isotherms are found to be less dependent on concentration in the dilute region concerned. This dependency is in agreement with the prediction of the Scheutjens and Fleer theory based on the loop-train-tail model.


Sign in / Sign up

Export Citation Format

Share Document