confocal fluorescence
Recently Published Documents


TOTAL DOCUMENTS

768
(FIVE YEARS 107)

H-INDEX

55
(FIVE YEARS 5)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Abigail E. Reese ◽  
Charles Lochenie ◽  
Ailsa Geddis ◽  
Luana A. Machado ◽  
Marcos C. de Souza ◽  
...  

Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.


2022 ◽  
Vol 130 (1) ◽  
pp. 138
Author(s):  
В.П. Дресвянский ◽  
С.А. Зилов ◽  
Е.Ф. Мартынович

Single F2 and F3+- color centers in the LiF crystal were studied by confocal fluorescence microscopy. The time dependences of their fluorescence intensity were analyzed and statistically processed. Our studies show that, the F3+- color center, being photoexcited, is able enter the triplet state, while in ground (singlet) state it changes orientation with a frequency of 1.5 – 2 Hz at room temperature, due to reorientational diffusion, unlike the F2- center, which is reoriented only being in the triplet state. This subtype of rotational diffusion of the center does not lead to its translational diffusion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2022
Author(s):  
Xiangjie Su ◽  
Mercedes Ramírez-Escudero ◽  
Feilong Sun ◽  
Joep B. van den Dikkenberg ◽  
Mies J. van Steenbergen ◽  
...  

The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles’ ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1703
Author(s):  
Viktoria Pevna ◽  
Georges Wagnières ◽  
Veronika Huntosova

Glioblastoma is one of the most aggressive types of tumors. Although few treatment options are currently available, new modalities are needed to improve prognosis. In this context, photodynamic therapy (PDT) is a promising adjuvant treatment modality. In the present work, hypericin-mediated PDT (hypericin-PDT, 2 J/cm2) of U87 MG cells is combined with (2 min, 15 mW/cm2 at 808 nm) photobiomodulation (PBM). We observed that PBM stimulates autophagy, which, in combination with PDT, increases the treatment efficacy and leads to apoptosis. Confocal fluorescence microscopy, cytotoxicity assays and Western blot were used to monitor apoptotic and autophagic processes in these cells. Destabilization of lysosomes, mitochondria and the Golgi apparatus led to an increase in lactate dehydrogenase activity, oxidative stress levels, LC3-II, and caspase-3, as well as a decrease of the PKCα and STAT3 protein levels in response to hypericin-PDT subcellular concentration in U87 MG cells. Our results indicate that therapeutic hypericin concentrations can be reduced when PDT is combined with PBM. This will likely allow to reduce the damage induced in surrounding healthy tissues when PBM-hypericin-PDT is used for in vivo tumor treatments.


2021 ◽  
Author(s):  
Deanna Ng ◽  
Aiman Ali ◽  
Kiera Lee ◽  
Denise Eymael ◽  
Kento Abe ◽  
...  

Peritoneal metastases (PM) portend limited survival in patients with Gastric Adenocarcinoma (GCa), and strategies to prevent and/or more effectively treat PM are needed. Existing models are limited in recapitulating key elements of the peritoneal metastatic cascade. To explore the underlying cellular and molecular mechanisms of PM, we have developed an ex vivo human peritoneal explant model. Fresh peritoneal tissue samples were obtained from patients undergoing abdominal surgery and suspended, mesothelial layer down but without direct contact, above a monolayer of red-fluorescent stained AGS human GCa cells for 24hrs, then washed and cultured for a further 3 days. Implantation and invasion of GCa cells within the explant were examined using real-time confocal fluorescence microscopy. Superficial implantation of AGS GCa cells within the mesothelial surface was readily detected, and colonies expanded over 3 days. To investigate the sensitivity of the model to altered GCa cellular implantation, we stably transfected AGS cells with E-Cadherin, restoring the E-Cadherin that they otherwise lack. This markedly suppressed implantation and invasion of AGS cells into the submesothelial mesenchymal layer. Here we show that this ex vivo human peritoneal explant model is responsive to manipulation of genetic factors that regulate peritoneal implantation and invasion by GCa cells, with reproducible results.


2021 ◽  
Author(s):  
Pattrawadee Toprangkobsin ◽  
Wijit Banlunara ◽  
Benchaphorn Limcharoen ◽  
Asada Leelahavanichkul ◽  
Pravit Asawanonda ◽  
...  

Abstract To minimize fast chemical degradation of retinal, we convert this aldehyde into proretinal nanoparticles (PRNs) by forming retinylidene moieties on chitosan and allowing the grafted polymers to assemble into nanoparticles, and then load the obtained PRNs into detachable microneedles made of 1:1 (by weight) hyaluronic acid/maltose. An embedment of the PRNs in the solid matrix of microneedles helps improving chemical stability of the grafted retinal; the loaded device can be kept at 25 °C for three months (longest time experimented) with less than 30% degradation of the retinylidene moieties. The presence PRNs in the hyaluronic acid-maltose matrix also help improving mechanical strength of the needles. Administration of PRN-loaded detachable microneedles on fresh porcine ear skin results in complete deposition of an array of microneedles in the skin tissue at the dept that spans both epidermis and dermis, as observed by stereomicroscopic and confocal fluorescence microscopic analyses of the cross-sectioned tissue pieces. Obvious diffusion of the PRNs from the originally embedded site of the needles in the skin tissue to the nearby location can be observed, and even distribution in the tissue is reached at 4 h post administration. Rats administered with single dose of PRN-loaded microneedles show significant increased epidermal thickness as compared to rats administered with unloaded microneedles. Both PRN-loaded microneedles and unloaded microneedles produce no skin irritation in rats.


2021 ◽  
Author(s):  
Zheng Li ◽  
Miro Taphanel ◽  
Thomas Längle ◽  
Jürgen Beyerer

Sign in / Sign up

Export Citation Format

Share Document