scholarly journals Dynamic characteristic analysis on the bit lateral steering force of push-the-bit rotary steerable bottom hole assembly

2018 ◽  
Vol 4 (4) ◽  
pp. 201-209
Author(s):  
Heng Wang ◽  
Zhi Chuan Guan ◽  
Guo Shan Zhao
Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2012 ◽  
Vol 271-272 ◽  
pp. 1742-1749
Author(s):  
Peng Cheng Huang ◽  
Qing Hua Yang ◽  
Guan Jun Bao ◽  
Li Bin Zhang

Aimed at existing problems on the bending performance of pneumatic bending joint, a new type of pneumatic bending joint is proposed in this paper. Double flexible pneumatic actuators are used as actuating drivers. Based on the first law of thermodynamics and the joint dynamic equation, the angle dynamic model is established and analyzed. Moreover simplified model is proposed. Meanwhile, its dynamic characteristic is analyzed through simulation analysis. The simulation suggests the following results: in the gas-filled phase, the joint’s pressure response time is about 10ms; while it is about 60ms in the gas-escape phase; and the angle response time of joint is 10 to 20ms. When the joint damping coefficient is increasing, this value will also increase.


2021 ◽  
Vol 1750 ◽  
pp. 012043
Author(s):  
Zhang zhibing ◽  
Dong zhen ◽  
Zhang xiao ◽  
Zhang dong

Sign in / Sign up

Export Citation Format

Share Document