scholarly journals Kinematics and dynamics analysis of new rotary-percussive PDM drilling tool

Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.

Author(s):  
M. F. Al Dushaishi ◽  
R. Nygaard ◽  
E. Hoel ◽  
S. Hellvik ◽  
M. Andersen

Severe drill stem vibrations could leads to excessive damage to the bottom hole assembly causing an increase in nonproductive time. Different drill stem vibrations models are used to predict and avoid resonance regions by optimizing the selection of bottom hole assembly components and operating parameters such as weight on bit, and surface RPM. In addition to avoid the resonance regions, specialized tools have been developed to reduce vibrations. However a complete understanding on how to mitigate vibration and its effect on drilling performance is still lacking. This study investigates the cause of drill stem vibrations, its effect on drilling performance, and the effect of including vibration reductions tools in the bottom hole assembly design in several recent drilled wells in the North Sea. Vibration damping tools used in this study were able to reduce both lateral and torsional drill stem vibration compared to a well with no vibration damping tool. Torsional drill stem vibrations tend to increase through rich sand zones causing an increase in lateral vibrations. The impact drill stem vibrations have on drilling performance was identified through rate of penetration. As lateral vibration intensity increases, instantaneous rate of penetration decreases.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


2021 ◽  
Author(s):  
Tianhua Zhang ◽  
Shiduo Yang ◽  
Chandramani Shrivastava ◽  
Adrian A ◽  
Nadege Bize-Forest

Abstract With the advancement of LWD (Logging While Drilling) hardware and acquisition, the imaging technology becomes not only an indispensable part of the drilling tool string, but also the image resolution increases to map layers and heterogeneity features down to less than 5mm scale. This shortens the geological interpretation turn-around time from wireline logging time (hours to days after drilling) to semi-real time (drilling time or hours after drilling). At the same time, drilling motion is complex. The depth tracking is on the surface referenced to the surface block movement. The imaging sensor located downhole can be thousands of feet away from the surface. Mechanical torque and drag, wellbore friction, wellbore temperature and weight on bit can make the downhole sensor movement motion not synchronized with surface pipe depth. This will cause time- depth conversion step generate image artifacts that either stop real-time interpretation of geological features or mis-interpret features on high resolution images. In this paper, we present several LWD images featuring distortion mechanism during the drilling process using synthetic data. We investigated how heave, depth reset and downhole sensor stick/slip caused image distortions. We provide solutions based on downhole sensor pseudo velocity computation to minimize the image distortion. The best practice in using Savitsky-Golay filter are presented in the discussion sections. Finally, some high-resolution LWD images distorted with drilling-related artifacts and processed ones are shown to demonstrate the importance of image post-processing. With the proper processed images, we can minimize interpretation risks and make drilling decisions with more confidence.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


Author(s):  
Jialin Tian ◽  
Genyin Li ◽  
Liming Dai ◽  
Lin Yang ◽  
Hongzhi He ◽  
...  

Torsional stick–slip vibrations easily occur when the drill bit encounters a hard or a hard-soft staggered formation during drilling process. Moreover, serious stick–slip vibrations of the drill string is the main factor leading to low drilling efficiency or even causing the downhole tools failure. Therefore, establishing the stick–slip theoretical model, which is more consistent with the actual field conditions, is the key point for new drilling technology. Based on this, a new torsional vibration tool is proposed in this paper, then the multidegree-of-freedom torsional vibrations model and nonlinear dynamic model of the drill string are established. Combined with the actual working conditions in the drilling process, the stick–slip reduction mechanism of the drill string is studied. The research results show that the higher rotational speed of the top drive, smaller viscous damping of the drill bit, and smaller WOB (weight on bit) will prevent the stick–slip vibration to happen. Moreover, the new torsional vibration tool has excellent stick–slip reduction effect. The research results and the model established in this paper can provide important references for reducing the stick–slip vibrations of the drill string and improving the rock-breaking efficiency.


2016 ◽  
Vol 248 ◽  
pp. 85-92 ◽  
Author(s):  
Farooq Kifayat Ullah ◽  
Franklyn Duarte ◽  
Christian Bohn

A common problem in the petroleum drilling process is the torsional oscillation generated by the friction present during the cutting process. Torsional oscillations in drill string are particularly difficult to control because the drill string is an underactuated system, it has a very small diameter to length ratio and it is driven at top end with the cutting process at the other end. These factors make the drill string prone to self-excited torsional vibrations caused by the stick-slip of the cutting bit. The system is modeled as a torsional pendulum with two degrees of freedom, where the upper inertia models the top drive and also part of the drilling pipes. The bottom inertia models the bottom hole assembly (BHA). The drill is considered to be a massless torsional spring-damper. The drill string is subjected to friction, which is formulated using a dry friction model. The friction model takes into account Coulomb friction, stiction and Stribeck effect. The latter friction component is the main nonlinear phenomenon that introduces negative damping at the bit; it leads to self-enforcing stick-slip torsional oscillations.In the approach of this work, for the attenuation of these self-excited oscillations a recursive backstepping control strategy is used and it is carried out in continuous time. The main contribution of this work, which is different from the backstepping approaches reported in the literature, is to use a nonlinear/artificial damping as virtual control input. The stability of the system has been proven in the sense of Lyapunov. The goal of the proposed algorithm is to deal the underactuation of the system and to provide a good response for different operating points. The effectiveness and robustness of the controller has been tested in simulations.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2049-2052
Author(s):  
Liang Hu ◽  
De Li Gao

Hydraulic orienter has been widely used to alter the drilling direction downhole in coiled tubing drilling. A problem is encountered in construction field. When torque and drag of bottom hole assembly (BHA) are over the maximum output torque of orienter, This caused that it difficult to orient. Therefore, we need to calculate the maximum torque and drag in the process of orientation, it can provide a theoretical basis for designing and selecting the hydraulic orienter. Compared with the conventional force analysis, this paper additionally considered the case of zero weight on bit (WOB), the impact of the mud viscous forces and the relationship between dynamic and static friction, so that we can get more precise result of force analysis.


2014 ◽  
Vol 50 (9-10) ◽  
pp. 583-587
Author(s):  
S. A. Zaurbekov ◽  
B. Z. Kaliev ◽  
M. Zh. Muzaparov ◽  
Zh. N. Kadyrov ◽  
A. V. Kochetkov

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Parimal Arjun Patil ◽  
Catalin Teodoriu

Drillstring vibration is one of the limiting factors maximizing drilling performance. Torsional vibrations/oscillations while drilling is one of the sever types of drillstring vibration which deteriorates the overall drilling performance, causing damaged bit, failure of bottom-hole assembly, overtorqued tool joints, torsional fatigue of drillstring, etc. It has been identified that the wellbore-drillstring interaction and well face-drill bit interaction are the sources of excitation of torsional oscillations. Predrilling analysis and real time analysis of drillstring dynamics is becoming a necessity for drilling oil/gas or geothermal wells in order to optimize surface drilling parameters and to reduce vibration related problems. It is very challenging to derive the drillstring model considering all modes of vibrations together due to the complexity of the phenomenon. This paper presents the mathematical model of a torsional drillstring based on nonlinear differential equations which are formulated considering drillpipes and bottom-hole assembly separately. The bit–rock interaction is represented by a nonlinear friction forces. Parametric study has been carried out analyzing the influence of drilling parameters such as surface rotations per minute (RPM) and weight-on-bit (WOB) on torsional oscillations. Influences of properties of drillstring like stiffness and inertia, which are most of the times either unknown or insufficiently studied during modeling, on torsional oscillation/stick-slip is also studied. The influences of different rock strength on rate of penetration (ROP) considering the drilling parameters have also been studied. The results show the same trend as observed in fields.


2019 ◽  
Vol 10 (1) ◽  
pp. 79-90
Author(s):  
Leilei Huang ◽  
Qilong Xue ◽  
Baolin Liu ◽  
Chunxu Yang ◽  
Ruihe Wang ◽  
...  

Abstract. Vibration and high shock are major factors in the failure of downhole tools. It is important to study the causes of vibration and shock formation to prevent failure of the drillstring and bottom hole assembly (BHA). At present, it is generally recognized that the vibration of drillstring is the main reason for the failure, especially the lateral vibration. In this paper, the bottom tool of Rotary Steering Drilling System (RSS) calculation model was established based on the secondary development of ABAQUS software. Starting from the initial configuration of drilling tool, considering the contact impact of drilling tool and borehole wall, the dynamic excitation of guide mechanism and the drilling pressure, torque, rotational speed, gravity, buoyancy, drilling fluid damping. The dynamic characteristics of the inherent frequency and dynamic stress of the bottom hole assembly (BHA) were calculated and analyzed, and risk assessment method based on the quantitative vibration intensity was established. The reliability of typical drilling tool is evaluated, which provides a reference for the optimization design of BHA of Rotary Steering Drilling System.


Sign in / Sign up

Export Citation Format

Share Document