scholarly journals Oscillations of transonic flow past a symmetric profile with a blunt trailing edge

2021 ◽  
Vol 37 ◽  
pp. 42-46
Author(s):  
Alexander G. Kuzmin
1981 ◽  
Vol 110 ◽  
pp. 273-292 ◽  
Author(s):  
F. Motallebi ◽  
J. F. Norbury

Experiments have been carried out to investigate the phenomenon of vortex shedding from the blunt trailing edge of an aerodynamic body in transonic and supersonic flow. The effect of a discharge of bleed air from a slot in the trailing edge has been included and the relationship between the vortex formation and base pressure has been considered.In transonic flow a small amount of bleed air was found to produce a rearward shift in the point of origin of the vortices with a consequent substantial increase in base pressure. The effect was less marked in supersonic flow. At higher rates of bleed two different regimes of vortex shedding were identified and increase in bleed rate caused a reduction in base pressure. For bleed rates giving near-maximum base pressure no vortex shedding occurred.


2000 ◽  
Author(s):  
Yoshiatsu Oki ◽  
Takeshi Sakata ◽  
Naoki Uchiyama ◽  
Takeshi Kaiden ◽  
Takeshi Andoh

Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


1992 ◽  
Vol 241 ◽  
pp. 443-467 ◽  
Author(s):  
A. Neish ◽  
F. T. Smith

The basic model problem of separation as predicted by the time-mean boundary-layer equations is studied, with the Cebeci-Smith model for turbulent stresses. The changes between laminar and turbulent flow are investigated by means of a turbulence ‘factor’ which increases from zero for laminar flow to unity for the fully turbulent regime. With an attached-flow starting point, a small increase in the turbulence factor above zero is found to drive the separation singularity towards the trailing edge or rear stagnation point for flow past a circular cylinder, according to both computations and analysis. A separated-flow starting point is found to produce analogous behaviour for the separation point. These findings lead to the suggestion that large-scale separation need not occur at all in the fully turbulent regime at sufficiently high Reynolds number; instead, separation is of small scale, confined near the trailing edge. Comments on the generality of this suggestion are presented, along with some supporting evidence from other computations. Further, the small scale involved theoretically has values which seem reasonable in practical terms.


Sign in / Sign up

Export Citation Format

Share Document