ANALYSIS OF AN EARTH EMBANKMENT CONSTRUCTED ON A SOFT CLAY FORMATION STABILIZED BY PREFABRICATED VERTICAL DRAINS.

Author(s):  
A. Samieh ◽  
M. Mansour ◽  
A. Elgendy ◽  
M. Mahmoud
2000 ◽  
Vol 37 (6) ◽  
pp. 1265-1271 ◽  
Author(s):  
J S Sharma ◽  
D Xiao

Installation of prefabricated vertical drains using a mandrel causes disturbance of clay surrounding the drain, resulting in a "smear" zone of reduced permeability. In this paper, an attempt is made to characterize the smear zone using large-scale laboratory model tests. Two tests, simulating the cases of "no smear" and "with smear," were conducted. Excess pore-water pressures were monitored at seven different locations along the radial direction. In addition, undisturbed samples were collected at various locations in the clay layer for conducting oedometer tests. The distribution of excess pore pressure due to drain installation gave a clear indication of the extent of the smear zone. The effect of reconsolidation on the properties of clay was found to be much greater than that of the remoulding of the clay. The extent of the smear zone was also confirmed from the change in permeability of the clay layer in the smear zone obtained from oedometer tests. The radius of the smear zone is about four times that of the mandrel, and the horizontal permeability of the clay layer in the smear zone is approximately 1.3 times smaller than that in the intact zone.Key words: consolidation, permeability, smear zone, soft clay, vertical drains.


2008 ◽  
Vol 45 (8) ◽  
pp. 1073-1091 ◽  
Author(s):  
S. R. Lo ◽  
J. Mak ◽  
C. T. Gnanendran ◽  
R. Zhang ◽  
G. Manivannan

This paper presents the long-term performance of a wide geogrid-reinforced road embankment constructed on soft clay improved with prefabricated vertical drains (PVDs) at a freeway extension site 150 km north of Sydney in Australia. The foundation soil and the embankment were instrumented and monitored for about 400 days for excess pore-water pressure, earth pressure, and reinforcement tension, and for 9 years for displacement profiles. The embankment was constructed in stages and surcharged in an attempt to reduce post-construction settlement. As the embankment width was wide relative to the thickness of the soft clay, the settlement near the centre was modelled by a unit cell analysis. The equivalent horizontal permeability was determined by back analysis of the central zone using the first 12 months of settlement data. All other soil parameters were determined from the laboratory and field testing. The predicted pore-water pressure response over the first 400 days showed reasonable agreement with measured values. The same analysis was then continued to predict settlement over a period of 9 years. The predicted settlement was, however, smaller than the measured value at the centre region of the embankment.


2007 ◽  
Vol 44 (5) ◽  
pp. 603-617 ◽  
Author(s):  
Curtis Kelln ◽  
Jitendra Sharma ◽  
David Hughes ◽  
Gabriel Gallagher

This paper presents a case history of a geotextile reinforced highway embankment constructed on a soft estuarine deposit installed with prefabricated vertical drains. The case history documents the geotechnical site characterization, embankment construction, and monitoring program. The loading response of the soft estuarine soil was monitored during construction using hydrostatic profile gauges, settlement plates, pneumatic piezometers, and slope inclinometers. Settlements of up to 1.3 m were measured under the 4 m high embankment. The deformation behaviour was interpreted qualitatively from the monitoring data using the general framework of elastic-plastic soil models. The effectiveness of the monitoring program is also briefly discussed. The paper provides performance details that make this case history useful to researchers studying the loading response of soft soils under a geotextile reinforced embankment.Key words: case history, embankment, soft clay, vertical drainage, reinforcement.


2011 ◽  
Vol 48 (6) ◽  
pp. 970-983 ◽  
Author(s):  
Xueyu Geng ◽  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn

This paper considers the consolidation of a layer of clay in which partially penetrating prefabricated vertical drains (PVDs) are used in conjunction with a combined surcharge and vacuum preloading. Analytical solutions for partially penetrating PVDs are derived by considering vacuum pressure (suction), time-dependent embankment surcharge, well resistance, and smear zone. Three-dimensional seepage with a virtual vertical drain is assumed to reflect real seepage into the soil beneath the tip of a PVD. Analytical solutions were then used to examine the length of the vertical drain and vacuum pressure on soft clay to determine the consolidation time and degree of consolidation, associated settlement, and distribution of suction along the drain. The proposed solutions are then employed to analyse a case history. Finally, an appropriate PVD length in relation to clay thickness and drain spacing is recommended for various loading patterns.


2002 ◽  
Vol 39 (2) ◽  
pp. 304-315 ◽  
Author(s):  
Dennes T Bergado ◽  
A S Balasubramaniam ◽  
R Jonathan Fannin ◽  
Robert D Holtz

This paper presents the performance of a full-scale test embankment constructed on soft Bangkok clay with prefabricated vertical drains (PVDs) at the site of the new Bangkok International Airport in Thailand. The embankment was square in plan with a maximum height of 4.2 m, 3H:1V side slopes, and base dimensions of 40 m by 40 m. The piezometric level with depth is characterized by negative drawdown starting at around 8-10 m depth caused by excessive withdrawal of groundwater. Instrumentation was provided to monitor both horizontal and vertical movements of the test embankment. The measured increases in undrained shear strengths with depth are in agreement with the values calculated from the SHANSEP technique. The secondary compression ratio, Cα, was 0.018, or within the normal values for marine clays. The coefficient of horizontal consolidation measured in the field, Ch(field), was higher for soil at 4 and 10 m depths than for the weakest soil at 6 m depth. The back-calculated Ch(field) values range from 3 to 8 m2/year, and the ratio of Ch(field) to Ch(lab) ranges from 4 to 5, where Ch(lab) is the coefficient of horizontal consolidation measured in the laboratory. The degree of consolidation estimated from the pore-pressure dissipation measurements agreed with those obtained from settlement measurements. The water-content reductions from field measurements were also in good agreement with the values computed from the consolidation settlements. The full-scale study confirmed that the magnitudes of consolidation settlements increased with the corresponding decrease of PVD spacing at a particular time period. Lastly, the results of the full-scale study have proven the effectiveness of PVDs for the improvement of soft Bangkok clay.Key words: soft clay, consolidation, prefabricated vertical drain, preloading, test embankment.


Sign in / Sign up

Export Citation Format

Share Document