scholarly journals Simultaneous optimization of clustering and fuzzy IF-THEN rules parameters by the genetic algorithm in fuzzy inference system-based wave predictor models

2017 ◽  
Vol 19 (3) ◽  
pp. 385-404 ◽  
Author(s):  
Morteza Zanganeh

Prediction of wave parameters is of great importance in the design of marine structures. In this paper, two shortcomings with the adaptive network-based fuzzy inference system (ANFIS) model for prediction of wave parameters are remedied by employing a genetic algorithm (GA). The first shortcoming in the ANFIS model goes back to its problem for automatic extraction of fuzzy IF-THEN rules and the second one is related to its gradient-based nature for tuning the antecedent and consequent parameters of fuzzy IF-THEN rules. To deal with these shortcomings, in this study a combined FIS and GA model is developed in which the capability of the GA as an evolutionary algorithm is used for simultaneous optimization of the subtractive clustering parameters and the antecedent and consequent parameters of fuzzy IF-THEN rules. Following the development of the combined model, this model is used to predict wave parameters, i.e., significant wave height and peak spectral period at Lake Michigan. The obtained results show that the developed model outperforms the ANFIS model and the Coastal Engineering Manual (CEM) method to estimate the function representing the generation process of the wind-driven waves.

2019 ◽  
Vol 9 (4) ◽  
pp. 780 ◽  
Author(s):  
Khalid Elbaz ◽  
Shui-Long Shen ◽  
Annan Zhou ◽  
Da-Jun Yuan ◽  
Ye-Shuang Xu

The prediction of earth pressure balance (EPB) shield performance is an essential part of project scheduling and cost estimation of tunneling projects. This paper establishes an efficient multi-objective optimization model to predict the shield performance during the tunneling process. This model integrates the adaptive neuro-fuzzy inference system (ANFIS) with the genetic algorithm (GA). The hybrid model uses shield operational parameters as inputs and computes the advance rate as output. GA enhances the accuracy of ANFIS for runtime parameters tuning by multi-objective fitness function. Prior to modeling, datasets were established, and critical operating parameters were identified through principal component analysis. Then, the tunneling case for Guangzhou metro line number 9 was adopted to verify the applicability of the proposed model. Results were then compared with those of the ANFIS model. The comparison showed that the multi-objective ANFIS-GA model is more successful than the ANFIS model in predicting the advance rate with a high accuracy, which can be used to guide the tunnel performance in the field.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Sunny Katyara ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Shaikh ◽  
Zahid Hussain Khand ◽  
Lukasz Staszewski ◽  
...  

With the rising load demand and power losses, the equipment in the utility network often operates close to its marginal limits, creating a dire need for the installation of new Distributed Generators (DGs). Their proper placement is one of the prerequisites for fully achieving the benefits; otherwise, this may result in the worsening of their performance. This could even lead to further deterioration if an effective Energy Management System (EMS) is not installed. Firstly, addressing these issues, this research exploits a Genetic Algorithm (GA) for the proper placement of new DGs in a distribution system. This approach is based on the system losses, voltage profiles, and phase angle jump variations. Secondly, the energy management models are designed using a fuzzy inference system. The models are then analyzed under heavy loading and fault conditions. This research is conducted on a six bus radial test system in a simulated environment together with a real-time Power Hardware-In-the-Loop (PHIL) setup. It is concluded that the optimal placement of a 3.33 MVA synchronous DG is near the load center, and the robustness of the proposed EMS is proven by mitigating the distinct contingencies within the approximately 2.5 cycles of the operating period.


2012 ◽  
Vol 482-484 ◽  
pp. 2192-2196
Author(s):  
Yuan Tian ◽  
Zi Ma ◽  
Peng Li

For improving precision of 3D surface measurement equipments, which are playing important role in reverse engineering, the Adaptive Network based Fuzzy Inference System (ANFIS) is developed to reconstruct 3D surface error, and the measurement error of point cloud is compensated by the presented 3D error ANFIS model. The precision of 3D surface measurement equipments has been improved noticeably


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Ye ◽  
Yi Xia ◽  
Zhiming Yao

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD) and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.


2013 ◽  
Vol 385-386 ◽  
pp. 1411-1414 ◽  
Author(s):  
Xue Bo Jin ◽  
Jiang Feng Wang ◽  
Hui Yan Zhang ◽  
Li Hong Cao

This paper describes an architecture of ANFIS (adaptive network based fuzzy inference system), to the prediction of chaotic time series, where the goal is to minimize the prediction error. We consider the stock data as the time series. This paper focuses on how the stock data affect the prediction performance. In the experiments we changed the number of data as input of the ANFIS model, the type of membership functions and the desired goal error, thereby increasing the complexity of the training.


Sign in / Sign up

Export Citation Format

Share Document