Modeling river stage–discharge–sediment rating relation using support vector regression

2012 ◽  
Vol 43 (6) ◽  
pp. 851-861 ◽  
Author(s):  
Sharad K. Jain

A variety of data-driven approaches have been developed in the recent past to capture the properties of hydrological data for improved modeling. These include artificial neural networks (ANNs), fuzzy logic and evolutionary algorithms, amongst others. Of late, kernel-based machine learning approaches have become popular due to their inherent advantages over traditional modeling techniques. In this work, support vector machines (SVMs), a kernel-based learning approach, has been investigated for its suitability to model the relationship between the river stage, discharge, and sediment concentration. SVMs are an approximate implementation of the structural risk minimization principle that aims at minimizing a bound on the generalization error of a model. These have been found to be promising in many areas including hydrology. Application of SVMs to regression problems is known as support vector regression (SVR). This paper presents an application of SVR to model river discharge and sediment concentration rating relation. The results obtained using SVR were compared with those from ANNs and it was found that the SVR approach is better when compared with ANNs.

2015 ◽  
Vol 1120-1121 ◽  
pp. 1385-1389
Author(s):  
Xin Yin ◽  
Yuan Peng Liu ◽  
Xian Zhang Feng

The friction welded joints made by GH4169 heat metal alloys are detected by U1traPAC system of the ultrasonic wave explore instrument. Aimed at the blemish signal characteristics, this article introduce Support Vector Machine (SVM) theory, which is based on statistical theory and structural risk minimization principle, to carry out multi-classification study of the detection signal. We decompose de-noising signals with wavelet packet transform, and extract energy eigenvalues according to "energy- defects". In accordance with designed "1-to-v" SVMs scheme, we respectively input normalized eigenvector to the SVM model to obtain the Forecast data. It is verificated that the limited existing data and information is well used by SVM and the signal is accurately been classificated. All of these verify that SVM has a strong generalization ability.


2013 ◽  
Vol 433-435 ◽  
pp. 612-616 ◽  
Author(s):  
Bin Xia ◽  
Fan Yu Kong ◽  
Song Yuan Xie

This study analyses and compares several forecast methods of urban rail transit passenger flow, and indicates the necessity of forecasting short-term passenger flow. Support vector regression is a promising method for the forecast of passenger flow because it uses a risk function consisting of the empirical error and a regularized term which is based on the structural risk minimization principle. In this paper, the prediction model of urban rail transit passenger flow is constructed. Through the comparison with BP neural networks forecast methods, the experimental results show that applying this method in URT passenger flow forecasting is feasible and it provides a promising alternative to passenger flow prediction.


2013 ◽  
Vol 438-439 ◽  
pp. 1167-1170
Author(s):  
Xu Chao Shi ◽  
Ying Fei Gao

The compression index is an important soil property that is essential to many geotechnical designs. As the determination of the compression index from consolidation tests is relatively time-consuming. Support Vector Machine (SVM) is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. Considering the fact that parameters in SVM model are difficult to be decided, a genetic SVM was presented in which the parameters in SVM method are optimized by Genetic Algorithm (GA). Taking plasticity index, water content, void ration and density of soil as primary influence factors, the prediction model of compression index based on GA-SVM approach was obtained. The results of this study showed that the GA-SVM approach has the potential to be a practical tool for predicting compression index of soil.


1993 ◽  
Vol 5 (6) ◽  
pp. 893-909 ◽  
Author(s):  
V. Vapnik ◽  
L. Bottou

In previous publications (Bottou and Vapnik 1992; Vapnik 1992) we described local learning algorithms, which result in performance improvements for real problems. We present here the theoretical framework on which these algorithms are based. First, we present a new statement of certain learning problems, namely the local risk minimization. We review the basic results of the uniform convergence theory of learning, and extend these results to local risk minimization. We also extend the structural risk minimization principle for both pattern recognition problems and regression problems. This extended induction principle is the basis for a new class of algorithms.


Sign in / Sign up

Export Citation Format

Share Document