scholarly journals Uncertainties and risks in reservoir operations under changing hydroclimatic conditions

Author(s):  
Ali Aljoda ◽  
Shaleen Jain

Abstract Uncertainties and risks associated with hydroclimatic variations pose a challenge to the management and planning of water resources systems. This study demonstrates the importance of understanding the changing hydrologic regime of the Feather River Basin (FRB) and its impacts on water resources decision variables (i.e., storage requirement and performance of a water supply reservoir). A simple storage–yield–reliability model (S–Y–R) is used to quantify the risk of the stationary-based designed reservoir under the temporal variation and nonstationarity in N-year blocks of the Feather River Inflow into Lake Oroville (FRI). Furthermore, the potential linkages of the long-term variability in the FRI to climate variations are investigated by applying wavelet spectrum and coherence analysis to the FRI and atmospheric–oceanic indices (e.g., ENSO and PDO). The results show substantial variations in the FRB hydrologic regime over different timescales with episodes of abrupt shifts toward significantly higher storage requirements, and decrease in the reservoir performance during historical periods of high FRI variance and lag-1 serial correlation. Although the mean inflows are high, the storage capacity is increased by (a) 38 and 48% due to the 5 and 20% increase in the FRI variance during the periods 1904–1953 and 1960–2009, respectively, and (b) 34% due to the increase in the serial correlation coefficient in the period of 1750–1799. Likewise, reservoir performance significantly decreased for the same reasons in the same critical periods. The reliability and resilience dropped to 74 and 29% (1904–1953) and to 76 and 50% (1960–2009 period) due to the increased variance of FRI, while vulnerability reached 70% during the high lag-1 correlations in 1532–1581 and 1564–1613, and 40% in 1904–1953 due to the high FRI variance. Furthermore, the wavelet coherence analysis observes strong associations between the streamflow and climate teleconnection patterns in specific periodic cycles during the same critical periods which link the variability in FRI and decision variables to the hydroclimatic variations. These linkages give a primary indication for the reservoir storage requirement characterization.

2014 ◽  
Vol 35 (5) ◽  
pp. 777-791 ◽  
Author(s):  
Zengyong Li ◽  
Ming Zhang ◽  
Ruofei Cui ◽  
Qing Xin ◽  
Lu Liqian ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1863 ◽  
Author(s):  
Teresita Canchala ◽  
Wilfredo Alfonso-Morales ◽  
Wilmar Loaiza Cerón ◽  
Yesid Carvajal-Escobar ◽  
Eduardo Caicedo-Bravo

Given that the analysis of past monthly rainfall variability is highly relevant for the adequate management of water resources, the relationship between the climate-oceanographic indices, and the variability of monthly rainfall in Southwestern Colombia at different time scales was chosen as the research topic. It should also be noted that little-to-no research has been carried out on this topic before. For the purpose of conducting this research, we identified homogeneous rainfall regions while using Non-Linear Principal Component Analysis (NLPCA) and Self-Organizing Maps (SOM). The rainfall variability modes were obtained from the NLPCA, while their teleconnection in relation to the climate indices was obtained from Pearson’s Correlations and Wavelet Transform. The regionalization process clarified that Nariño has two regions: the Andean Region (AR) and the Pacific Region (PR). The NLPCA showed two modes for the AR, and one for the PR, with an explained variance of 75% and 48%, respectively. The correlation analyses between the first nonlinear components of AR and PR regarding climate indices showed AR high significant positive correlations with Southern Oscillation Index (SOI) index and negative correlations with El Niño/Southern Oscillation (ENSO) indices. PR showed positive ones with Niño1 + 2, and Niño3, and negative correlations with Niño3.4 and Niño4, although their synchronous relationships were not statistically significant. The Wavelet Coherence analysis showed that the variability of the AR rainfall was influenced principally by the Niño3.4 index on the 3–7-year inter-annual scale, while PR rainfall were influenced by the Niño3 index on the 1.5–3-year inter-annual scale. The El Niño (EN) events lead to a decrease and increase in the monthly rainfall on AR and PR, respectively, while, in the La Niña (LN) events, the opposite occurred. These results that are not documented in previous studies are useful for the forecasting of monthly rainfall and the planning of water resources in the area of study.


Author(s):  
Pavan Kumar Yeditha ◽  
Tarun Pant ◽  
Maheswaran Rathinasamy ◽  
Ankit Agarwal

Abstract With the increasing stress on water resources for a developing country like India, it is pertinent to understand the dominant streamflow patterns for effective planning and management activities. This study investigates the spatiotemporal characterization of streamflow of six unregulated catchments in India. Firstly, Mann Kendall (MK) and Changepoint analysis were carried out to detect the presence of trends and any abrupt changes in hydroclimatic variables in the chosen streamflows. To unravel the relationships between the temporal variability of streamflow and its association with precipitation and global climate indices, namely, Niño 3.4, IOD, PDO, and NAO, continuous wavelet transform is used. Cross-wavelet transform and wavelet coherence analysis was also used to capture the coherent and phase relationships between streamflow and climate indices. The continuous wavelet transforms of streamflow data revealed that intra-annual (0.5 years), annual (1 year), and inter-annual (2–4 year) oscillations are statistically significant. Furthermore, a better understanding of the in-phase relationship between the streamflow and precipitation at intra-annual and annual time scales were well-captured using wavelet coherence analysis compared to cross wavelet transform. Furthermore, our analysis also revealed that streamflow observed an in-phase relationship with IOD and NAO, whereas a lag correlation with Niño 3.4 and PDO indices at intra-annual, annual and interannual time scales.


2020 ◽  
Vol 21 (4) ◽  
pp. 1185-1202 ◽  
Author(s):  
Wen Jun ◽  
Hamid Mahmood ◽  
Muhammad Zakaria

The study investigates the impact of trade openness on pollution in China by applying wavelet-coherence analysis, phase-difference technique and Breitung and Candelon (2006) causality test. The estimated results provide some dynamic association between trade openness and pollutant variables. The results indicate that trade openness has increased pollution in China especially after 2001 when China became member of WTO. It suggests that “pollution haven hypothesis” exists in China. These results imply that trade openness has increased exports which has increased domestic production by increasing the scale of industries, which in turn has increased pollution in the country. The findings of spectral domain causality test show that trade openness causes carbon emission both in short, medium and long runs. It indicates that trade openness forecast carbon emissions in China. The results suggest that China should take suitable measures while following trade openness policy to avoid pollution.


2018 ◽  
Vol 5 (1) ◽  
pp. 1481559
Author(s):  
Peterson Owusu Junior ◽  
Baidoo Kwaku Boafo ◽  
Bright Kwesi Awuye ◽  
Kwame Bonsu ◽  
Henry Obeng-Tawiah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document