scholarly journals Impact of land use-land cover change on spatio-temporal trends in seasonal stream flow and suspended sediment load of Godavari basin from 1969 to 2019

Author(s):  
Madhura Chetan Aher ◽  
Sanjay Yadav

Abstract Assessment of long-term trend in stream flow and sediment load is important for adopting soil and water conservation measures and for predicting morphological changes in rivers. In the present study, detailed quantification of the nature of trend in stream flow and suspended sediment load of Godavari basin, India is reported for the period of 1969 to 2019. The Mann–Kendall test is used to check trend of stream flow and sediment load for different seasons, namely, spring, monsoon, post-monsoon and winter. The land use-land cover of the whole basin is prepared for four decades (1980–2020). The maximum and minimum water and sediment discharge is detected in monsoon and winter season, respectively. The stream flow is found significantly decreased during monsoon and post-monsoon season. The sediment load is significantly decreased for monsoon and spring season. The nature of trend in sediment load is attributed to the land use and land cover change of the basin. The significant reduction suspended sediment load is mainly due to increase in water bodies and planned agricultural area. The findings of the research would help to manage water resources as well as sustainable development in the Godavari basin.

2015 ◽  
Vol 19 (7) ◽  
pp. 3319-3331 ◽  
Author(s):  
L. Hao ◽  
G. Sun ◽  
Y. Liu ◽  
J. Wan ◽  
M. Qin ◽  
...  

Abstract. Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are diminishing as a result of rapid environmental and socioeconomic transformations, characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of stream flow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River basin in southern China, where massive industrialization has occurred during the past 3 decades. We found that stream flow increased by 58 % and evapotranspiration (ET) decreased by 23 % during 1986–2013 as a result of a three-fold increase in urban areas and a reduction of rice paddy fields by 27 %. Both high flows and low flows increased significantly by about 28 % from 2002 to 2013. The increases in stream flow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS (Moderate Resolution Imaging Spectroradiometer) data. Attribution analysis, based on two empirical models, indicated that land-use/land-cover change contributed about 82–108 % of the observed increase in stream flow from 353 ± 287 mm yr−1 during 1986–2002 to 556 ± 145 during 2003–2013. We concluded that the reduction in ET was largely attributed to the conversion of cropland to urban use. The effects of land-use change overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from an artificial wetland-dominated landscape to an urban land-use- dominated one, and thus was considered an extreme type of contemporary hydrologic disturbance. The ongoing large-scale urbanization of the rice paddy-dominated regions, in humid southern China and East Asia, will likely elevate storm-flow volume, aggravate flood risks, and intensify urban heat island effects. Understanding the connection between land-use/land-cover change and changes in hydrological processes is essential for better management of urbanizing watersheds in the rice paddy-dominated landscape.


Author(s):  
K. Venkatesh ◽  
H. Ramesh

<p><strong>Abstract.</strong> Streamflow can be affected by a number of aspects related to land use and can vary promptly as those factors change. Urbanization, deforestation, mining, agricultural practices and economic growth are some of the factors related to these land use changes which alter the stream flow. In the present study, the impact of land use land cover change (LULC) on stream flow is studied by using SWAT model for Tungabhadra river basin, located in the state of Karnataka, India. Tungabhadra river originates in the Western Ghats of Karnataka and flows towards north-east and joins the river Krishna. The land use maps of 1993, 2003 and 2018 are used for assessing the stream flow changes with respect to LULC. Calibration and validation of the model for streamflow was carried out using the SUFI-2 algorithm in SWAT-CUP for the years 1983&amp;ndash;1993 and 1994&amp;ndash;2000 respectively. Statistical parameters namely Coefficient of Determination (R<sup>2</sup>) &amp;amp; Nash–Sutcliffe (N-S) were used to assess the efficiency and performance of the SWAT model. It was found that the observed and simulated streamflow values are closely matching, which in turn projects that the model results are acceptable. The calibrated model was used for simulation of future dynamic land use scenario to assess the impact on streamflow. The results can be used for conservation of water and soil management.</p>


2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

Sign in / Sign up

Export Citation Format

Share Document