Acquiescence to acceptance: community acceptance testing in water supply and sanitation

2015 ◽  
Vol 10 (3) ◽  
pp. 595-600
Author(s):  
Rajeeb Ghimire

This paper deals with the concept of ‘community acceptance testing (CAT)’ which is perhaps a new concept in the water supply sector. To understand this it is necessary to accept the water supply system as a product of engineering works and water as social goods. While the engineering approach verifies the product against predefined specifications, the CAT validates the capability of that product to satisfy user expectations. In the water supply, sanitation and hygiene sector, there is a culture of verification, but validation should also be given due importance. The validation process is based on user stories and is done before handing over the project to the community. It establishes the community's supremacy over system decision-making and service delivery. The CAT approach promotes the designing of community-engineered systems.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 947
Author(s):  
Barbara Tchórzewska-Cieślak ◽  
Katarzyna Pietrucha-Urbanik ◽  
Mohamed Eid

Within the frame of upgrading and modernisation of the Water Supply System (WSS), our work is focussing on the safety systems/devices implemented or that should be implemented in the WSS. The implementation of safety systems is supposed to reduce hazard occurrence and hazardous consequences in case of a WSS unsafe disruption. To assess this reduction, we preconise the use of the safety integrity levels standards. The implementation of the safety systems/devices is undertaken on the ground of the multi-barriers safeguard approach. The “Water Contamination Hazard” is considered in the paper. A case study is presented, assessed and conclusions are drawn. The methodology presented in the paper and the results of the case study assessment will contribute to the decision-making regarding the upgrading of the safety and the performance of the WSS.


1991 ◽  
Vol 24 (11) ◽  
pp. 71-76 ◽  
Author(s):  
Lin Xueya ◽  
Yang Yuesuo

This paper established a response function of groundwater level using the principle of superposition formed a response matrix which combined the simulation model of groundwater flow system and the optimization model of groundwater supply system. The calculation was carried out by micro-computer. Two methods were used to determine the unit pulse value so as to calculate more accurate response coefficients. Based on the hydrogeologic conceptual model of the study area, a management model for optimization of groundwater supply system was established under the conditions of not only meeting the increasingly growing need of water supply but also controlling or eliminating the various hazards caused by overpumping of groundwater, and a practical, feasible and comprehensive decision making plan was also put forward for Shi Jiazhuang city.


Sign in / Sign up

Export Citation Format

Share Document