scholarly journals A linear programming approach to optimise the management of water in dammed river systems for meeting demands and preventing floods

2017 ◽  
Vol 18 (2) ◽  
pp. 713-722 ◽  
Author(s):  
Jaime Veintimilla-Reyes ◽  
Annelies De Meyer ◽  
Dirk Cattrysse ◽  
Jos Van Orshoven

Abstract Water in sufficient quantity and quality is indispensable for multiple purposes like domestic and industrial use, irrigated agriculture, hydropower generation and ecosystem functioning. In many regions of the world, water availability is limited and even declining. Moreover, water availability is variable in space and time and often does not match with the spatio-temporal demand pattern. To overcome the temporal discrepancy between availability and consumption, reservoirs are constructed. Monitoring and predicting the water available in the reservoirs, the needs of the consumers and the losses throughout the river and water distribution system are necessary requirements to fairly allocate the available water to the different users, prevent floods and ensure sufficient water flow in the river. In this paper, this surface water allocation problem is considered a Network Flow Optimisation Problem (NFOP) solved by spatio-temporal optimisation using linear programming techniques.

1970 ◽  
Vol 1 (2) ◽  
pp. 63-71 ◽  
Author(s):  
Md. Mosiur Rahman ◽  
A.H.M. Kamal ◽  
Abdullah Al Mamun ◽  
Md. Shafi Uddin Miah

Irrigated agriculture has been playing a vital role for the growth in crop production in Bangladesh. Minor irrigation comprising of shallow tubewells (STWs), deep tubewells (DTWs), hand tubewells (HTWs) and low-lift pumps (LLPs) is a major irrigation system in the country. Poor performance of irrigation is an issue for the expansion of irrigated area. The present study was carried out to examine the conveyance efficiency and rate of irrigation water loss in DTW schemes in Bogra, Thakurgaon and Godagari zones of Barind Management Development Authority. There were various types of water distribution identified in these schemes with including Poly Venyl Chloride (PVC) buried pipe, cement concrete (CC) rectangular, Ferro trapezoidal, Ferro semicircular and rectangular earth drain. The average conveyance efficiency of PVC buried pipe for Bogra, Thakurgaon and Godagari zones ranged from 94.46% to 95.37% and rate of water loss ranged from 5.45% to 9.55% in three study zones. Average conveyance efficiency of CC rectangular for Bogra and Godagari zone ranged from 91.20% and rate of water loss from 6.58% to 9.93%. Average conveyance efficiency of Ferro trapezoid for Bogra and Godagari zone ranged from 87.80% to 90.06% and rate of water loss ranged from 9.94% to 12.21%. Average conveyance efficiency of Ferro semicircle for Bogra and Godagari zone ranged between 88.13% and 86.82% and rate of water loss between 11.59% and 11.68%. Average conveyance efficiency and rate of water loss of rectangular earth drain Godagari zone was 58.66% and 42.29% respectively. About 80% farmers recommended buried pipe irrigation system and about 20% semi-circular channel. The study suggests that the improved water distribution system as developed by BMDA is sustainable to increase productivity of irrigation systems in Bangladesh. DOI: http://dx.doi.org/10.3329/jbayr.v1i2.10032


1996 ◽  
Vol 23 (1) ◽  
pp. 42-48
Author(s):  
Terrence M. Miles ◽  
Barbara J. Lence

A simplified representation of the city of Winnipeg water distribution system is developed and a linear programming model is formulated to represent this system. Six scenarios of the linear programming model are analyzed to determine the most efficient operating policy when the objective functions vary from minimizing reservoir drawdowns to minimizing pumping. This analysis reveals that low total pumping values and low maximum pumping values can be obtained if storage at the inner-city reservoirs is utilized. It is also shown that the system cannot satisfy demand during high demand periods without drawing down the Deacon Reservoir. Key words: reservoirs, water distribution, optimization.


Sign in / Sign up

Export Citation Format

Share Document