scholarly journals Comparison between double slope solar still and fourfold slope solar still: energy, exergy, exergoeconomic, and enviroeconomic evaluation

Author(s):  
Zhilin Sun ◽  
Wenrong Tu ◽  
Shibiao Fang

Abstract This paper proposes a single basin fourfold slope solar still, which includes a fourfold slope glass cover plate used for solar heat collection and steam condensation. In order to show the efficiency of fourfold slope solar still, comparative experiments are conducted under the winter climate conditions in Hangzhou for testing the operational performance of double slope type solar still (DOSS) and fourfold slope still (FOSS), so as to make a comparative analysis between them. Results show that the productivity of fourfold slope still is 19.51% higher than that of double slope still, and fourfold slope solar still enhances the average hourly energy efficiency by 31.11%. According to the energy method, the energy payback time values of fourfold slope solar still and double slope solar still are 64.88 months and 75.42 months respectively. According to the environmental parameter method, FOSS and DOSS reduce 5.47 tons and 4.58 tons of CO2 respectively. The corresponding values based on the exergy environment parameters are 0.21 and 0.18 tons of CO2, respectively. The fourfold slope solar still has more obvious emission reduction function than the double slope solar still. The cost of distilled water of fourfold slope solar still is 0.28 RMB/kg, and the cost of double slope solar still is 0.30 RMB/kg. In addition, the environmental and economic parameters of fourfold slope still and double slope still are 79.29$ (561.37RMB) and 66.35$ (469.76RMB), respectively. While, the corresponding values based on the exergoenvironmental parameter are 3.05$ (21.59RMB) and 2.56$ (18.12RMB), respectively. From the analysis of exergoeconomic and exergoenvironmental parameters, fourfold slope single basin solar still appears to be more effective.

Author(s):  
Zhilin Sun ◽  
Wenrong Tu ◽  
Shibiao Fang

Abstract In this paper, a dome slope single basin solar still for water treatment and desalination is presented. This new solar still device is based on installing a dome slope cover on the walls of the solar still. The main objective of such still is to concentrate more sunrays at the still's bottom basin, through the increased area of dome glass cover. Experiments are conducted under the climate conditions in Hangzhou city, China, for testing the operational performance of dome slope type solar still and the fourfold slope still, so as to make a comparative analysis between them. Assessment of the dome slope still's feasibility is performed based on energy, exergy, exergoeconomic, and enviroeconomic methodologies, as well as energy payback time. Results show that the productivity of dome slope still is 36% higher than that of fourfold slope still, and dome slope solar still enhances the average hourly energy efficiency by 34%. Due to the higher energy and exergy outputs of dome slope solar still throughout its lifetime, the novel solar still proposed in this study mitigates more CO2 compared to the fourfold slope still. Overall, incorporation dome slope cover with the still is found promising in terms of freshwater yield, cost, and energy payback time compared to conventional one. The dome slope single basin solar still appears to be effective from exergoeconomic, exergoenvironmental parameters analysis.


2014 ◽  
Vol 672-674 ◽  
pp. 44-47
Author(s):  
Xin Fang Wu ◽  
Yong Sheng Liu ◽  
Juan Xu ◽  
Xiao Dong Si ◽  
Wei Lei ◽  
...  

This paper mainly analyses a BAPV system of 3kWp and a BIPV system of 10 kWp in Shanghai, China. Net present value (NPV) and the payback time (Pd) as the parameters to determine the profitability of the system based on some actual measured data. As there are two subsidy policies in China, including the initial investment subsidy and PV electricity tariff subsidy. The variations of NPV and Pdwith the initial investment subsidy and PV electricity tariff subsidy are researched. Analysis results indicate both the systems have a good economic benefit. Since the manufacturing, utilization and recycling periods of PV systems can lead to negative impacts on the environment. Environmental impacts by both the systems are also evaluated in this paper by the energy payback time (EPBT) and greenhouse-gas payback time (GPBT). Results show both the systems have a good environmental benefit, PV technology and PV system are sustainable.


JOM ◽  
2011 ◽  
Vol 63 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Yubo Jiao ◽  
Alex Salce ◽  
Wade Ben ◽  
Feng Jiang ◽  
Xiaoyang Ji ◽  
...  

2009 ◽  
Vol 17 (2) ◽  
pp. 137-147 ◽  
Author(s):  
O. Perpiñan ◽  
E. Lorenzo ◽  
M. A. Castro ◽  
R. Eyras

Sign in / Sign up

Export Citation Format

Share Document