Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal

2002 ◽  
Vol 46 (1-2) ◽  
pp. 123-128 ◽  
Author(s):  
J.L. Zilles ◽  
C.-H. Hung ◽  
D.R. Noguera

The objective of this research was to assess the relevance of organisms related to Rhodocyclus in enhanced biological phosphorus removal in full-scale wastewater treatment plants. The presence of these organisms in full-scale plants was first confirmed by fluorescent in situ hybridization. To address which organisms were involved in phosphorus removal, a method was developed which selected polyphosphate-accumulating organisms from activated sludge samples by DAPI staining and flow cytometry. Sorted samples were characterized using fluorescent in situ hybridization. The results of these analyses confirmed the presence of organisms related to Rhodocyclus in full-scale wastewater treatment plants and supported the involvement of these organisms in enhanced biological phosphorus removal. However, a significant fraction of the polyphosphate-accumulating organisms were not related to Rhodocyclus.

2003 ◽  
Vol 47 (11) ◽  
pp. 37-43 ◽  
Author(s):  
A.M. Saunders ◽  
A. Oehmen ◽  
L.L. Blackall ◽  
Z. Yuan ◽  
J. Keller

Glycogen-accumulating organisms (GAOs) were present in six full-scale plants investigated and in all but one made a significant contribution to the amount of volatile fatty acid (VFA) taken up anaerobically. While most plants surveyed contain GAOs, it was demonstrated that it is possible for a full-scale plant to operate with an insignificant GAO population.“Candidatus Accumulibacter phosphatis”were the significant polyphosphate-accumulating organisms (PAOs) in all plants surveyed. “Candidatus Competibacter phosphatis” were found in all plants along with other possible GAOs that were observed but not identified. A significant GAO population will increase the carbon requirements by removing VFA that could otherwise have been used by PAOs. Process optimization minimizing GAOs in full-scale plants would lead to a more efficient use of VFA. Enhanced biological phosphorus removal (EBPR), fluorescence in situ hybridisation (FISH), glycogen accumulating organism (GAO); polyphosphate accumulating organism (PAO);


Microbiology ◽  
2011 ◽  
Vol 157 (8) ◽  
pp. 2287-2296 ◽  
Author(s):  
Jeong Myeong Kim ◽  
Hyo Jung Lee ◽  
Dae Sung Lee ◽  
Kangseok Lee ◽  
Che Ok Jeon

The presence of glycogen-accumulating organisms (GAO) has been hypothesized to be a cause of deterioration in enhanced biological phosphorus removal (EBPR) processes due to their abilities to out-compete polyphosphate-accumulating organisms (PAO). Based on 16S rRNA gene sequences, new members of uncultured gammaproteobacterial GAO (GB) were identified from sludge samples of a lab-scale sequencing batch reactor used for EBPR. The new GB formed a phylogenetic lineage (GB8) clearly distinct from the previously reported seven GB subgroups. Because the new GB8 members were not targeted by the known fluorescence in situ hybridization (FISH) oligonucleotide probes, a GB8-specific FISH probe (GB429) and a new FISH probe (GB742) targeting all eight GB subgroups were designed, and the phenotypic properties of the new GB8 members were investigated. FISH and microautoradiography approaches showed that GB429-targeted cells (GB8) were large coccobacilli (2–4 µm in size) with the ability to take up acetate under anaerobic conditions, but unable to accumulate polyphosphate under the subsequent aerobic conditions, consistent with in situ phenotypes of GB. FISH analyses on several sludge samples showed that members of GB8 were commonly detected as the majority of GB in lab- and full-scale EBPR processes. In conclusion, this study showed that members of GB8 could be a subgroup of GB with an important role in EBPR deterioration. Designs of FISH probes which hybridize with broader GB subgroups at different hierarchical levels will contribute to studies of the distributions and ecophysiologies of GB in lab- or full-scale EBPR plants.


2018 ◽  
Author(s):  
Eustace Y. Fernando ◽  
Simon Jon Mcllroy ◽  
Marta Nierychlo ◽  
Florian-Alexander Herbst ◽  
Markus C. Schmid ◽  
...  

AbstractEnhanced biological phosphorus removal (EBPR) is a globally important biotechnological process and relies on the massive accumulation of phosphate within special microorganisms.CandidatusAccumulibacter conform to classical physiology model for polyphosphate accumulating organisms and are widely believed to be the most important player for the process in full-scale EBPR systems. However, it was impossible till now to quantify the contribution of specific microbial clades to EBPR. In this study, we have developed a new tool to directly link the identity of microbial cells to the absolute quantification of intracellular poly-P and other polymers underin situconditions, and applied it to eight full-scale EBPR plants. BesidesCa. Accumulibacter, members of the genusTetrasphaerawere found to be important microbes for P accumulation, and in six plants they were the most important. As theseTetrasphaeracells did not exhibit the classical phenotype of poly-P accumulating microbes, our entire understanding of the microbiology of the EBPR process has to be revised. Furthermore, our new single-cell approach can now also be applied to quantify storage polymer dynamics in individual populationsin situin other ecosystems and might become a valuable tool for many environmental microbiologists.


2004 ◽  
Vol 70 (9) ◽  
pp. 5383-5390 ◽  
Author(s):  
Yunhong Kong ◽  
Jeppe Lund Nielsen ◽  
Per Halkjær Nielsen

ABSTRACT The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants.


Sign in / Sign up

Export Citation Format

Share Document