accumulibacter phosphatis
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

mSystems ◽  
2021 ◽  
Author(s):  
Elizabeth A. McDaniel ◽  
Francisco Moya-Flores ◽  
Natalie Keene Beach ◽  
Pamela Y. Camejo ◽  
Ben O. Oyserman ◽  
...  

“ Candidatus Accumulibacter phosphatis” is a model polyphosphate-accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the shared sequence identity of the polyphosphate kinase ( ppk1 ) locus.


Author(s):  
Sergio Tomás-Martínez ◽  
Hugo B.C. Kleikamp ◽  
Thomas R. Neu ◽  
Martin Pabst ◽  
David G. Weissbrodt ◽  
...  

Abstract Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here, bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates, such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of “Ca. Accumulibacter” to produce different types of NulOs. Proteomic analysis showed the ability of “Ca. Accumulibacter” to reutilize and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria, which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of “Ca. Accumulibacter” in particular, and biofilms in general. Key Points •“Ca. Accumulibacter” has the potential to produce a range of nonulosonic acids. •Mass spectrometry and lectin binding can reveal the presence and location of nonulosonic acids. •The role of nonulosonic acid in non-pathogenic bacteria needs to be studied in detail.


2020 ◽  
Author(s):  
Elizabeth A. McDaniel ◽  
Francisco Moya-Flores ◽  
Natalie Keene Beach ◽  
Pamela Y. Camejo ◽  
Benjamin O. Oyserman ◽  
...  

ABSTRACTMicrobial communities in their natural habitats consist of closely related populations that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. ‘Candidatus Accumulibacter phosphatis’ is a polyphosphate-accumulating organism that contributes to the Enhanced Biological Phosphorus Removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters. Distinct Accumulibacter clades often co-exist in full-scale wastewater treatment plants and lab-scale enrichment bioreactors, and have been hypothesized to inhabit distinct ecological niches. However, since individual strains of the Accumulibacter lineage have not been isolated in pure culture to date, these predictions have been made solely on genome-based comparisons and enrichments with varying strain composition. Here, we used genome-resolved metagenomics and metatranscriptomics to explore the activity of co-existing Accumulibacter clades in an engineered bioreactor environment. We obtained four high-quality genomes of Accumulibacter strains that were present in the bioreactor ecosystem, one of which is a completely contiguous draft genome scaffolded with long reads. We identified core and accessory genes to investigate how gene expression patterns differ among the dominating strains. Using this approach, we were able to identify putative pathways and functions that may differ between Accumulibacter clades and provide key functional insights into this biotechnologically significant microbial lineage.IMPORTANCE‘Candidatus Accumulibacter phosphatis’ is a model polyphosphate accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the polyphosphate kinase (ppk1) locus sequence identity. These clades are predicted to have key functional differences in acetate uptake rates, phage defense mechanisms, and nitrogen cycling capabilities. However, such hypotheses have largely been made based on gene-content comparisons of sequenced Accumulibacter genomes, some of which were obtained from different systems. Here, we performed time-series genome-resolved metatranscriptomics to explore gene expression patterns of co-existing Accumulibacter clades in the same bioreactor ecosystem. Our work provides an approach for elucidating ecologically relevant functions based on gene expression patterns between closely related microbial populations.


2020 ◽  
Author(s):  
Sergio Tomás-Martínez ◽  
Hugo B.C. Kleikamp ◽  
Thomas R. Neu ◽  
Martin Pabst ◽  
David G. Weissbrodt ◽  
...  

AbstractNonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here, bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates, such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of “Ca. Accumulibacter” to produce different types of NulOs. Proteomic analysis showed the ability of “Ca. Accumulibacter” to reutilize and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria, which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of “Ca. Accumulibacter” in particular, and biofilms in general.Key Points“Ca. Accumulibacter” has the potential to produce a range of nonulosonic acids.Mass spectrometry and lectin binding can reveal the presence and location of nonulosonic acids.Role of nonulosonic acid in non-pathogenic bacteria needs to be studied in detail.


2020 ◽  
Vol 105 (1) ◽  
pp. 379-388
Author(s):  
Danny R. de Graaff ◽  
Mark C. M. van Loosdrecht ◽  
Mario Pronk

Abstract Candidatus Accumulibacter phosphatis is an important microorganism for enhanced biological phosphorus removal (EBPR). In a previous study, we found a remarkable flexibility regarding salinity, since this same microorganism could thrive in both freshwater- and seawater-based environments, but the mechanism for the tolerance to saline conditions remained unknown. Here, we identified and described the role of trehalose as an osmolyte in Ca. Accumulibacter phosphatis. A freshwater-adapted culture was exposed to a single batch cycle of hyperosmotic and hypo-osmotic shock, which led to the release of trehalose up to 5.34 mg trehalose/g volatile suspended solids (VSS). Long-term adaptation to 30% seawater-based medium in a sequencing batch reactor (SBR) gave a stable operation with complete anaerobic uptake of acetate and propionate along with phosphate release of 0.73 Pmol/Cmol, and complete aerobic uptake of phosphate. Microbial analysis showed Ca. Accumulibacter phosphatis clade I as the dominant organism in both the freshwater- and seawater-adapted cultures (> 90% presence). Exposure of the seawater-adapted culture to a single batch cycle of hyperosmotic incubation and hypo-osmotic shock led to an increase in trehalose release upon hypo-osmotic shock when higher salinity is used for the hyperosmotic incubation. Maximum trehalose release upon hypo-osmotic shock was achieved after hyperosmotic incubation with 3× salinity increase relative to the salinity in the SBR adaptation reactor, resulting in the release of 11.9 mg trehalose/g VSS. Genome analysis shows the possibility of Ca. Accumulibacter phosphatis to convert glycogen into trehalose by the presence of treX, treY, and treZ genes. Addition of trehalose to the reactor led to its consumption, both during anaerobic and aerobic phases. These results indicate the flexibility of the metabolism of Ca. Accumulibacter phosphatis towards variations in salinity. Key points • Trehalose is identified as an osmolyte in Candidatus Accumulibacter phosphatis. • Ca. Accumulibacter phosphatis can convert glycogen into trehalose. • Ca. Accumulibacter phosphatis clade I is present and active in both seawater and freshwater.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Leonor Guedes da Silva ◽  
Karel Olavarria Gamez ◽  
Joana Castro Gomes ◽  
Kasper Akkermans ◽  
Laurens Welles ◽  
...  

ABSTRACT Environmental fluctuations in the availability of nutrients lead to intricate metabolic strategies. “Candidatus Accumulibacter phosphatis,” a polyphosphate-accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the nonavailability of isolates has led to controversial conclusions on the metabolic pathways used. In this study, we experimentally determined the redox cofactor preferences of different oxidoreductases in the central carbon metabolism of a highly enriched “Ca. Accumulibacter phosphatis” culture. Remarkably, we observed that the acetoacetyl coenzyme A reductase engaged in polyhydroxyalkanoate (PHA) synthesis is NADH preferring instead of showing the generally assumed NADPH dependency. This allows rethinking of the ecological role of PHA accumulation as a fermentation product under anaerobic conditions and not just a stress response. Based on previously published metaomics data and the results of enzymatic assays, a reduced central carbon metabolic network was constructed and used for simulating different metabolic operating modes. In particular, scenarios with different acetate-to-glycogen consumption ratios were simulated, which demonstrated optima using different combinations of glycolysis, glyoxylate shunt, or branches of the tricarboxylic acid (TCA) cycle. Thus, optimal metabolic flux strategies will depend on the environment (acetate uptake) and on intracellular storage compound availability (polyphosphate/glycogen). This NADH-related metabolic flexibility is enabled by the NADH-driven PHA synthesis. It allows for maintaining metabolic activity under various environmental substrate conditions, with high carbon conservation and lower energetic costs than for NADPH-dependent PHA synthesis. Such (flexible) metabolic redox coupling can explain the competitiveness of PAOs under oxygen-fluctuating environments. IMPORTANCE Here, we demonstrate how microbial storage metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity of “Ca. Accumulibacter phosphatis” to act like glycogen-accumulating organisms (GAOs). These observations stem from slightly different experimental conditions, and controversy arises only when one assumes that metabolism can operate only in a single mode. Furthermore, we also show how the study of metabolic strategies is possible when combining omics data with functional cofactor assays and modeling. Genomic information can only provide the potential of a microorganism. The environmental context and other complementary approaches are still needed to study and predict the functional expression of such metabolic potential.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Pamela Y. Camejo ◽  
Ben O. Oyserman ◽  
Katherine D. McMahon ◽  
Daniel R. Noguera

“CandidatusAccumulibacter phosphatis” is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that “Ca. Accumulibacter phosphatis” is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.


2018 ◽  
Author(s):  
Leonor Guedes da Silva ◽  
Karel Olavarria Gamez ◽  
Joana Castro Gomes ◽  
Kasper Akkermans ◽  
Laurens Welles ◽  
...  

ABSTRACTEnvironmental fluctuations in the availability of nutrients lead to intricate metabolic strategies.CandidatusAccumulibacter phosphatis, a polyphosphate accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the inexistence of isolates has led to controversial conclusions on the metabolic pathways used.Here, we experimentally determined the redox cofactor preference of different oxidoreductases in the central carbon metabolism of a highly enrichedCa. A. phosphatis culture. Remarkably, we observed that the acetoacetyl-CoA reductase engaged in polyhydroxyalkanoates (PHA) synthesis is NADH-preferring instead of the generally assumed NADPH dependency. Based on previously published meta-omics data and the results of enzymatic assays, a reduced central carbon metabolic network was constructed and used for simulating different metabolic operating modes. In particular, scenarios with different acetate-to-glycogen consumption ratios were simulated. For a high ratio (i.e. more acetate), a polyphosphate-based metabolism arises as optimal with a metabolic flux through the glyoxylate shunt. In case of a low acetate-to-glycogen ratio, glycolysis is used in combination with reductive branch of the TCA cycle. Thus, optimal metabolic flux strategies will depend on the environment (acetate uptake) and on intracellular storage compounds availability (polyphosphate/glycogen).This metabolic flexibility is enabled by the NADH-driven PHA synthesis. It allows for maintaining metabolic activity under varying environmental substrate conditions, with high carbon conservation and lower energetic costs compared to NADPH dependent PHA synthesis. Such (flexible) metabolic redox coupling can explain PAOs’ competitiveness under oxygen-fluctuating environments.IMPORTANCEHere we demonstrate how microbial metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity ofCa. Accumulibacter phosphatis to act like glycogen accumulating organisms (GAO). These observations stem from slightly different experimental conditions and controversy only arises when one assumes metabolism can only operate in one single mode. Furthermore, we also show how the study of metabolic strategies is possible when combining-omics data with functional assays and modeling. Genomic information can only provide the potential of a microorganism. The environmental context and other complementary approaches are still needed to study and predict the functional application of such metabolic potential.


2018 ◽  
Author(s):  
Pamela Y. Camejo ◽  
Ben O. Oyserman ◽  
Katherine D. McMahon ◽  
Daniel R. Noguera

ABSTRACTThe unique and complex metabolism ofCandidatusAccumulibacter phosphatis has been used for decades for efficiently removing phosphorus during wastewater treatment in reactor configurations that expose the activated sludge to cycles of anaerobic and aerobic conditions. The ability of Accumulibacter to grow and remove phosphorus during cyclic anaerobic and anoxic conditions has also been investigated as a metabolism that could lead to simultaneous removal of nitrogen and phosphorus by a single organism. However, although phosphorus removal under cyclic anaerobic and anoxic conditions has been demonstrated, elucidating the role of Accumulibacter in this process has been challenging, since experimental research describes contradictory findings and none of the published Accumulibacter genomes show the existence of a complete pathway for denitrification. In this study, we use an integrated omics analysis to elucidate the physiology of an Accumulibacter strain enriched in a reactor operated under cyclic anaerobic and micro-aerobic conditions. The reactor’s performance suggested the ability of the enriched Accumulibacter (clade IC) to simultaneously use oxygen and nitrate as electron acceptors under micro-aerobic conditions. A draft genome of this organism was assembled from metagenomic reads (hereafter referred to as Accumulibacter UW-LDO-IC) and used as a reference to examine transcript abundance throughout one reactor cycle. The genome of UW-LDO-IC revealed the presence of a full denitrification pathway. The observed patterns of transcript abundance showed evidence of co-regulation of the denitrifying genes along with acbb3cytochrome, which is characterized as having high affinity for oxygen, thus supporting the hypothesis that UW-LDO-IC can simultaneously respire nitrate and oxygen. Furthermore, we identified an FNR-like binding motif upstream of the coregulated genes, suggesting transcriptional level regulation of the expression of both denitrifying and respiratory pathways in Accumulibacter UW-LDO-IC. Taken together, the omics analysis provides strong evidence that Accumulibacter UW-LDO-IC simultaneously uses oxygen and nitrate as electron acceptors under micro-aerobic conditions.IMPORTANCECandidatusAccumulibater phosphatis is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, micro-aerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our study provides strong genomics-based evidence that Accumulibacter is not only the main organism contributing to phosphorus removal under micro-aerobic conditions, but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.


Sign in / Sign up

Export Citation Format

Share Document