Ultrasonic sensor system for the uses in intelligent motion control system of a mobile robots group

2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


2021 ◽  
Vol 29 (2) ◽  
pp. 423-435
Author(s):  
Rihem Farkh ◽  
Khaled Al jaloud ◽  
Saad Alhuwaimel ◽  
Mohammad Tabrez Quasim ◽  
Moufida Ksouri

2015 ◽  
Author(s):  
Øyvind F. Auestad ◽  
J. William McFann ◽  
Jan T. Gravdahl

The pressurized air cushion on a Surface Effect Ship (SES) can lift up to 80% of total vessel mass. The SES Motion Control System (SES-MCS) controls the vent valves which again controls the air cushion pressure, assuming lift fan air flow is pressurizing the air cushion. By controlling the air cushion pressure one can significantly counteract vertical sea wave disturbances, ensure high passenger comfort and reduce sea-sickness. The case studied in this work is the Umoe Mandal Wave Craft prototype, ’Umoe Ventus’, which is a high-speed offshore wind-farm service vessel specially designed for control in the vertical plane. The SES-MCS can adjust the draft from 1m to 3.2m in less time than the wave period. The SES-MCS can reduce motions significantly in order to perform Operation and Maintenance (O&M) in high seas. The craft is the fastest wind-farm service vessel of its size with high comfort in all relevant sea states. The performance of the SES-MCS is demonstrated through full-scale sea trials.


2012 ◽  
Vol 163 ◽  
pp. 260-263
Author(s):  
Jing Lin Tong ◽  
Bo Li ◽  
Xiao Bo Wang

This paper introduces the hardware and the communication software design of control system based on Controller Area Network bus. The control system can realize to control the motion of servomotor through high speed C8501F040 single chip microcomputer with Controller Area Network bus and special motion controller - LM628. This system possesses characteristics such as simple structure, high reliability and high performance/price ratio. Key words: CAN bus, LM628, Motion Control System, Communication software


Sign in / Sign up

Export Citation Format

Share Document