scholarly journals Energy Modeling and Power Measurement for Mobile Robots

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.

2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2021 ◽  
Vol 877 (1) ◽  
pp. 012014
Author(s):  
H M Hameed ◽  
A T Rashid ◽  
M T Rashid ◽  
K A Al Amry

Abstract For any mobile system there is especially advantageous from a business perspective to develop energy-saving techniques that also extend to existing production processes. Therefore, looking for ways to enhance the energy efficiency of robot operations to maximize energy consumption efficiency is of considerable significance, a route-planning issue that refers to finding the shortest path to meet the predetermined goal location in a certain complex environment. So, one of the energy saving methods for a multi-mobile robot environment is to find the optimal path for a mobile robot that can improve power consumption. In this paper, an optimal power algorithm for “automatic storage and retrieval system” using multi-mobile robots is introduced based on efficient motion planning among a group of multi-mobile robots that gives a significant improvement in the level of energy consumption. Energy mechanism can be achieved using electrical power quantities on real robots, models or analytical equations based on robots’ physical model. The simulation results indicate that the algorithm enhanced power consumption efficiency.


Author(s):  
Fadlo Said, Et. al.

Energy consumption is an important element in the autonomy of mobile robots. In this paper, an energy model has been developed in Modelica language. The power of the Modelica® language is shown by simulating the energy model for a differential guide mobile robot as well as the motors. The model is tested with typical motor energy, mixed energy models, and a trapezoidal velocity as input.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 945 ◽  
Author(s):  
Yong Qiu ◽  
Chi Zhang ◽  
Bing Li ◽  
Ji Li ◽  
Xiaoyuan Zhang ◽  
...  

Oxidation ditches are popularly used in rural areas and decentralized treatment facilities where energy deficiency is of concern. Aeration control technologies are well established for diffusion systems in order to improve energy efficiency, but there are still challenges in their application in oxidation ditches because surface aerators have unique characteristics with respect to oxygen transfer and energy consumption. In this paper, an integral energy model was proposed to include the energy, aeration, and fluidic effects of surface aerators, by which the energy for aeration of each aerator can be estimated using online data. Two types of rotating disks with different diameters (1800 mm and 1400 mm) were monitored in situ to estimate the model parameters. Furthermore, a feedforward–feedback loop control strategy was proposed using the concept of energy analysis and optimization. The simplified control system was implemented in a full-scale Orbal oxidation ditch, achieving an approximately 10% saving in full-process energy consumption. The cost–benefit analysis and carbon emission assessment confirmed the economic feasibility and environmental contribution of the control system. The energy model can help process designers and operators to better understand and optimally control the aeration process in oxidation ditches.


Author(s):  
Gintautas Narvydas ◽  
Vidas Raudonis ◽  
Rimvydas Simutis

In the control of autonomous mobile robots there exist two types of control: global control and local control. The requirement to solve global and local tasks arises respectively. This chapter concentrates on local tasks and shows that robots can learn to cope with some local tasks within minutes. The main idea of the chapter is to show that, while creating intelligent control systems for autonomous mobile robots, the beginning is most important as we have to transfer as much as possible human knowledge and human expert-operator skills into the intelligent control system. Successful transfer ensures fast and good results. One of the most advanced techniques in robotics is an autonomous mobile robot on-line learning from the experts’ demonstrations. Further, the latter technique is briefly described in this chapter. As an example of local task the wall following is taken. The main goal of our experiment is to teach the autonomous mobile robot within 10 minutes to follow the wall of the maze as fast and as precisely as it is possible. This task also can be transformed to the obstacle circuit on the left or on the right. The main part of the suggested control system is a small Feed-Forward Artificial Neural Network. In some particular cases – critical situations – “If-Then” rules undertake the control, but our goal is to minimize possibility that these rules would start controlling the robot. The aim of the experiment is to implement the proposed technique on the real robot. This technique enables to reach desirable capabilities in control much faster than they would be reached using Evolutionary or Genetic Algorithms, or trying to create the control systems by hand using “If-Then” rules or Fuzzy Logic. In order to evaluate the quality of the intelligent control system to control an autonomous mobile robot we calculate objective function values and the percentage of the robot work loops when “If-Then” rules control the robot.


2015 ◽  
Vol 779 ◽  
pp. 201-204
Author(s):  
Ran Li ◽  
Yun Hua Li

Mobile robots have been widely used for the good adaptability, payload capability. Robot cooperation brings benefits for the task in a multi-robot team. In this paper, the modular hardware design of a leader-follower mobile robot team is discussed, including the distributed control architecture and the electronic system of each robot of the team. The basic idea behind this paper is to introduce the design of the hardware and distributed control architecture, which mainly manages the distributed control system, consisting of microcontroller modules connected through a data bus. The research has a potential applying prospect in mobile robot tracing and locating in the future.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Wang ◽  
Ming Wang ◽  
Yong Guan ◽  
Xiaojuan Li

Obstacle avoidance is a key performance of mobile robots. However, its experimental verification is rather difficult, due to the probabilistic behaviors of both the robots and the obstacles. This paper presents the Markov Decision Process based probabilistic formal models for three obstacle-avoidance strategies of a mobile robot in an uncertain dynamic environment. The models are employed to make analyses in PRISM, and the correctness of the analysis results is verified by MATLAB simulations. Finally, the minimum time and the energy consumption are determined by further analyses in PRISM, which prove to be useful in finding the optimal strategy. The present work provides a foundation for the probabilistic formal verification of more complicated obstacle-avoidance strategies.


2012 ◽  
Vol 522 ◽  
pp. 618-622
Author(s):  
Ying Xiong ◽  
Shi De Xiao ◽  
Shuang Jiang Lei ◽  
Feng Zha

An intelligent tracking control system based on the micro-control unit (MCU) has been developed to control the motors by sensing the change of black guide lines. After the training of the BP Neural Network, the MCU is able to make decisions quickly and accurately for various situations during robot moving. Using MCU technology to control the motors, the system is compatible for both manual and automatic control. The experiment shows that the mobile robot could follow the change of black guide lines accurately and quickly, and stillness and out-of-orbit were effectively inhibited during moving. The proposed tracking control system based on the BP Neural Network has been verified to have high reliability.


2021 ◽  
Vol 33 (6) ◽  
pp. 1284-1293
Author(s):  
Keita Yamada ◽  
◽  
Shoya Koga ◽  
Takashi Shimoda ◽  
Kazuya Sato

In this study, we developed a system for calculating the relative position and angle between a mobile robot and a marker using information such as the size of the marker of the internal camera of the mobile robot. Using this information, the mobile robot runs autonomously along the path given by the placement of the marker. In addition, we provide a control system that can follow a trajectory using information obtained by recognizing the mobile robot when reflected in an external camera using deep learning. The proposed method can easily achieve autonomous path travel control for mobile robots in environments where GPS cannot be received. The effectiveness of the proposed system is demonstrated under several actual experiments.


1999 ◽  
Vol 11 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Kazuhiro Mima ◽  
◽  
Masahiro Endou ◽  
Aiguo Ming ◽  
Chisato Kanamori ◽  
...  

This paper describes an elevator utility system that enables autonomous mobile robots to travel in office buildings. Attachments emulating the behavior of human fingers were developed to retrofit them to elevators without affecting elevators' inner workings. These attachments, consisting of button operation, controllers, and infrared ray communication, are remotely controlled by wireless commands from a robot. Mobile robots must use elevators without interfering with people using it, proposingcourses of robot action. A sensor system is presented for detecting people or objects in elevators. A prototype was developed, and its usefulness verified experimentally. The concept is expected to be useful for service robots working in office buildings.


Sign in / Sign up

Export Citation Format

Share Document