scholarly journals A study of pressure drop in a Capillary tube-viscometer for a two-phase flow

1995 ◽  
Author(s):  
F. Ohene ◽  
C. Livingston ◽  
C. Matthews ◽  
Y. Rhone
2007 ◽  
Vol 2 ◽  
pp. 25-32 ◽  
Author(s):  
Toru SUKAWA ◽  
Tomoya HASEGAWA ◽  
Kenji YOSHIDA ◽  
Isao KATAOKA

Author(s):  
Fumito Kaminaga ◽  
Baduge Sumith ◽  
Kunihito Matsumura

Two-phase pressure drop is experimentally examined in a flow boiling condition in a tube of diameter 1.45 mm using water in ranges of pressure from 10 to 100 kPa, mass flux from 18 to 152 kg/m2s, heat flux from 13 to 646 kW/m2, and exit quality from 0.02 to 0.77. Also, pressure drop in an adiabatic air-water two-phase flow is measured at atmospheric pressure using the same test section and mass flux ranges of liquid and gas as those in the flow boiling. Decreasing system pressure the pressure drop significantly increases at a given mass flux. Influence of vapor phase on the pressure drop is found to be large both in the adiabatic and the diabatic conditions. The frictional pressure drop correlation for the adiabatic two-phase flow is developed and applied to predict pressure drop in the flow boiling. But it cannot give satisfactory predictions. The Chisholm correlation calculating a two-phase pressure drop multiplier is modified to account the influence of vapor phase in a capillary tube and the modified correlation can predict the pressure drop in the flow boiling within an error of 20%.


Author(s):  
Junnosuke Okajima ◽  
Shigenao Maruyama ◽  
Hiroki Takeda ◽  
Atsuki Komiya ◽  
Sangkwon Jeong

This paper describes a novel cooling system to be applied in cryosurgery. An ultrafine cryoprobe has been developed to treat small lesions which cannot be treated by conventional cryoprobes. The main problem of the ultrafine cryoprobe is the reduction of the heat transfer rate by the small flow rate due to the large pressure drop in a microchannel and the large ratio of the surface area to the volume. In order to overcome these problems, we utilized boiling heat transfer in a microchannel as the heat transfer mechanism in the ultrafine cryoprobe. The objectives of this paper are to develop an ultrafine cryoprobe and evaluate its cooling characteristics. The ultrafine cryoprobe has a co-axial double tube structure which consists of inner and outer stainless steel tubes. The outer and inner diameters of the outer tube are 0.55mm and 0.3mm, respectively. The outer and inner diameters of the inner tube are 0.15mm and 0.07mm, respectively. The inner tube serves as a capillary tube to change the refrigerant from liquid state to two-phase flow. Furthermore, two-phase flow passes through the annular passage between the inner and out tube. The hydraulic diameter of the annular passage is 0.15mm. Furthermore, HFC-23 (Boiling point is −82.1°C at 1atm) is used as the refrigerants. The temperature of the ultrafine cryoprobe was measured. The lowest temperatures were −45°C in the insulated condition and −35°C in the agar at 37°C (which simulates in vivo condition). Furthermore, the frozen region which is generated around the ultrafine cryoprobe was measured 5mm from the tip of cryoprobe at 120s, and resulted to be 3mm in diameter. Moreover, the change of the refrigerant state is calculated by using the energy conservation equation and the empirical correlations of two-phase pressure drop and boiling heat transfer. As a result, the refrigerant state in the ultrafine cryoprobe depends on the external heat flux. Finally, the required geometry of the ultrafine cryoprobe to make high cooling performance is evaluated.


2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Sign in / Sign up

Export Citation Format

Share Document