scholarly journals Biological Electron Transfer and Catalysis Energy Frontier Research Center

2019 ◽  
Author(s):  
John Peters
2012 ◽  
Vol 14 (17) ◽  
pp. 5902 ◽  
Author(s):  
Aurélien de la Lande ◽  
Nathan S. Babcock ◽  
Jan Řezáč ◽  
Bernard Lévy ◽  
Barry C. Sanders ◽  
...  

2019 ◽  
Vol 116 (6) ◽  
pp. 2259-2264 ◽  
Author(s):  
Simona G. Huwiler ◽  
Claudia Löffler ◽  
Sebastian E. L. Anselmann ◽  
Hans-Joachim Stärk ◽  
Martin von Bergen ◽  
...  

Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to −0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC)2DEFGHI]2complex from the anaerobic bacteriumGeobacter metallireducensharboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries.


2016 ◽  
Vol 65 ◽  
pp. 94-99 ◽  
Author(s):  
C. Masato Nakano ◽  
Erick Moen ◽  
Hye Suk Byun ◽  
Heng Ma ◽  
Bradley Newman ◽  
...  

1997 ◽  
Vol 12 (8) ◽  
pp. 721-727 ◽  
Author(s):  
Karl S. Ryder ◽  
David G. Morris ◽  
Jonathan M. Cooper

Sign in / Sign up

Export Citation Format

Share Document