anaerobic bacterium
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 25)

H-INDEX

51
(FIVE YEARS 0)

2022 ◽  
Vol 79 (2) ◽  
Author(s):  
Cheikh Ibrahima Lo ◽  
Sory Ibrahima Traore ◽  
Awa Diop ◽  
Melhem Bilen ◽  
Esam Ibraheem Azhar ◽  
...  


Author(s):  
Zhuqing Mao ◽  
Fabian Gräßle ◽  
Jasmin Frey ◽  
Paolo Franchini ◽  
David Schleheck ◽  
...  

A new strictly anaerobic bacterium, strain DYL19T, was enriched and isolated with phosphite as the sole electron donor and CO2 as a single carbon source and electron acceptor from anaerobic sewage sludge sampled at a sewage treatment plant in Constance, Germany. It is a Gram-positive, spore-forming, slightly curved, rod-shaped bacterium which oxidizes phosphite to phosphate while reducing CO2 to biomass and small amounts of acetate. Optimal growth is observed at 30 °C, pH 7.2, with a doubling time of 3 days. Beyond phosphite, no further inorganic or organic electron donor can be used, and no other electron acceptor than CO2 is reduced. Sulphate inhibits growth with phosphite and CO2. The G+C content is 45.95 mol%, and dimethylmenaquinone-7 is the only quinone detectable in the cells. On the basis of 16S rRNA gene sequence analysis and other chemotaxonomic properties, strain DYL19T is described as the type strain of a new genus and species, Phosphitispora fastidiosa gen. nov., sp. nov.



BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Emily McIlvanna ◽  
Gerard J. Linden ◽  
Stephanie G. Craig ◽  
Fionnuala T. Lundy ◽  
Jacqueline A. James

AbstractThere is a growing level of interest in the potential role inflammation has on the initiation and progression of malignancy. Notable examples include Helicobacter pylori-mediated inflammation in gastric cancer and more recently Fusobacterium nucleatum-mediated inflammation in colorectal cancer. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that was first isolated from the oral cavity and identified as a periodontal pathogen. Biofilms on oral squamous cell carcinomas are enriched with anaerobic periodontal pathogens, including F. nucleatum, which has prompted hypotheses that this bacterium could contribute to oral cancer development. Recent studies have demonstrated that F. nucleatum can promote cancer by several mechanisms; activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation and immune evasion. This review provides an update on the association between F. nucleatum and oral carcinogenesis, and provides insights into the possible mechanisms underlying it.



Author(s):  
Zhixian Wei ◽  
Shichun Ma ◽  
Rui Chen ◽  
Weidong Wu ◽  
Hui Fan ◽  
...  

A novel mesophilic, aerotolerant anaerobic bacterium, designated JN-18T, was isolated from the pit mud of a strong aromatic Chinese liquor. According to a 16S rRNA gene sequence analysis, it had the highest sequence similarity to Aminipila butyrica DSM 103574T (95.69%). The G+C content of its genomic DNA was 43.39 mol%. The cells were Gram-stain-negative, slightly curved rods with flagella. Optimum growth was observed at 37 °C, pH 6.5 and without extra addition of NaCl. Strain JN-18Tutilized amino acids (l-alanine, l-arginine, l-asparagine, l-lysine, l-methionine, l-serine and l-threonine), malate and pyruvate, and used l-arginine and l-lysine to produce acetate, butyrate, H2, and CO2. The major cellular fatty acids of strain JN-18T were C14:0, C16:0 DMA and C18:1 cis-9 DMA. The carbohydrate composition of the cell wall predominantly included galactose, glucose and rhamnose. Based on its phylogenetic, phenotypic, physiological and biochemical characteristics, strain JN-18T was classified as a representative of a novel species within the genus Aminipila , for which the name Aminipila luticellarii sp. nov. is proposed. The type strain is JN-18T (=CCAM 412T=JCM 39126T).



Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1233
Author(s):  
Guido Granata ◽  
Davide Roberto Donno

The Gram-positive, anaerobic bacterium Clostridioides difficile (CD) represents the most common cause of nosocomial diarrhea worldwide and is responsible for increased morbidity and mortality, and prolonged hospital stays [...]



Author(s):  
Mariem Ben Khedher ◽  
Fatou Samba Diouf ◽  
Cheikh Ibrahima Lo ◽  
Stéphane Alibar ◽  
Guillaume Durand ◽  
...  




Author(s):  
Marisa H. Mayer ◽  
Mary N. Parenteau ◽  
Megan L. Kempher ◽  
Michael T. Madigan ◽  
Linda L. Jahnke ◽  
...  

AbstractBacterial lipids are well-preserved in ancient rocks and certain ones have been used as indicators of specific bacterial metabolisms or environmental conditions existing at the time of rock deposition. Here we show that an anaerobic bacterium produces 3-methylhopanoids, pentacyclic lipids previously detected only in aerobic bacteria and widely used as biomarkers for methane-oxidizing bacteria. Both Rhodopila globiformis, a phototrophic purple nonsulfur bacterium isolated from an acidic warm spring in Yellowstone, and a newly isolated Rhodopila species from a geochemically similar spring in Lassen Volcanic National Park (USA), synthesized 3-methylhopanoids and a suite of related hopanoids and contained the genes encoding the necessary biosynthetic enzymes. Our results show that 3-methylhopanoids can be produced under anoxic conditions and challenges the use of 3-methylhopanoids as biomarkers of oxic conditions in ancient rocks and as prima facie evidence that methanotrophic bacteria were active when the rocks were deposited.



2021 ◽  
Vol 368 (18) ◽  
Author(s):  
Cheikh Ibrahima Lo ◽  
Niokhor Dione ◽  
Aminata Mbaye ◽  
Patricia Fernández-Mellado Gómez ◽  
Issa Isaac Ngom ◽  
...  

ABSTRACT Strain Marseille-P3519T isolated from the fecal flora of a 25-year-old healthy French woman was a Gram-positive anaerobic bacterium, non-motile and non-spore forming. The 16S rRNA gene sequence of Marseille-P3519 showed 97.73% of sequence similarity with Limosilactobacillus reuteri DSM 20016, the closest species, phylogenetically. Furthermore, the average nucleotide identity of strain Marseille-3519 with its closest related species was 75.8% that was very below the recommended threshold (>95–96%). Its genome had 2 237 367 bp with 45.42 mol% of G + C content. Major fatty acids were C16:0 (50.8%), C18:1n9 (18.0%), C18:2n6 (9.8%) and C19:1n9 (8.9%). It was catalase negative and fermented glycerol, glucose, fructose, D-maltose, lactose and mannose. These findings support that strain Marseille-P3519 ( = CSURP3519 = CECT 30110) is a new member of the genus Limosilactobacillus for which the name Limosilactobacillus caccae sp. nov., is proposed.



2021 ◽  
Vol 8 (3) ◽  
pp. 1433-1443
Author(s):  
Jaron C. Hansen ◽  
Zachary T. Aanderud ◽  
Lindsey E. Reid ◽  
Carson Bateman ◽  
Conly L. Hansen ◽  
...  

The hyperthermophilic anaerobic bacterium, Caldicellulosiruptor bescii, is effective in degrading and solubilizing lignocellulosic materials. Laboratory studies have characterized the chemistry of the process for crystalline cellulose and switchgrass, but the data are insufficient for engineering commercial plants to use C. bescii for pre-digestion of waste streams. The purpose of this study is three-fold: 1) to identify any potential toxicities in C. bescii pre-digestion and biogas production from several wastes; 2) to determine the potential enhancement of biogas production by anaerobic digestion of pre-digested dairy manure and waste activated sludge; and 3) to identify variables that must be quantified and controlled for engineering commercial, continuous-flow systems for waste disposal and biogas production incorporating C. bescii pre-digestion. Tests were run at lab-, bench- and pilot plant-scale with C.bescii pre-digestion and controls run at 75°C and pH 7-8 followed by mesophilic anaerobic digestion at 37-41°C. The lab- and bench-scale tests demonstrate that C. bescii is capable of growing on several organic wastes and pre-digestion with C. bescii increases conversion of waste into biogas, typically by a factor of 2 or more. Incorporation of C. bescii pre-digestion in an optimized commercial system is predicted to provide 75-85% volatile solids conversion to biogas with 75% methane when digesting dairy manure and sewage sludge. Achieving these results at a commercial scale requires further work to quantify C. bescii growth and enzyme production rates, as well as rates of base- and enzyme-catalyzed hydrolysis of the polymeric materials, e.g., lignocellulose, in the waste in order to optimize retention times.



Sign in / Sign up

Export Citation Format

Share Document