scholarly journals Long-term lysimeter field testing of low-level radioactive waste forms

1995 ◽  
Author(s):  
J.W. Jr. McConnell ◽  
R.D. Rogers ◽  
J.D. Jastrow ◽  
W.E. Sanford ◽  
T.M. Sullivan
1997 ◽  
Author(s):  
J.W. Jr. McConnell ◽  
R.D. Rogers ◽  
J.D. Jastrow ◽  
W.E. Sanford ◽  
S.R. Cline ◽  
...  

1997 ◽  
Author(s):  
J.W. Jr. McConnell ◽  
R.D. Rogers ◽  
J.D. Jastrow ◽  
W.E. Sanford ◽  
S.R. Cline ◽  
...  

Author(s):  
Takeshi Ishikura ◽  
Daiichiro Oguri

Abstract Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in shallow burial disposal facility as low level radioactive waste (LLW) must be solidified by cement with adequate strength and must extend no harmful openings. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete and metal for mortar to fill openings in waste forms. Performance of a method to pre-place large sized metal or concrete waste and to fill mortar using small sized metal or concrete was tested. It was seen that the improved method substantially increases the filling ratio, thereby decreasing the numbers of waste containers.


1993 ◽  
Vol 333 ◽  
Author(s):  
Robert D. Rogers ◽  
M.A. Hamilton ◽  
R.H. Veeh ◽  
J.W. Mcconnell

ABSTRACTBecause of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The U.S. Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed.This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli.


2017 ◽  
Vol 07 (04) ◽  
Author(s):  
Gyorgy Patzay ◽  
Otto Zsille ◽  
Jozsef Csurgai ◽  
Gyula Vass ◽  
Ferenc Feil

2015 ◽  
Vol 4 (2) ◽  
pp. 119-123
Author(s):  
Nicholas Chan ◽  
Pierre Wong

Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association’s radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories’ Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236 m3 resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria.


1994 ◽  
Vol 353 ◽  
Author(s):  
Alexandre J. Grebenkov ◽  
Vitaly P. Trubnikov ◽  
Antonina B. Verzhynskaja ◽  
Victor A. Nikolajev ◽  
Inna B. Kapustina

AbstractWithin the framework of the Belarus National Programme, IPEP is performing research on the immobilization of low level radioactive waste after decontamination and remediation of Chernobyl Zone. The goal of the R&D programme is to develop a composite matrix for embedding these wastes using special encapsulation technology and reinforced and hydro-resisting polymer-concrete layer on solidified waste blocks to minimise the amount of cement for conditioning of waste.


Sign in / Sign up

Export Citation Format

Share Document