environmental footprint
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 318)

H-INDEX

30
(FIVE YEARS 9)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Monika Elżbieta Jach ◽  
Anna Serefko ◽  
Maria Ziaja ◽  
Marek Kieliszek

In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SPC) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SPC protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.


2022 ◽  
Vol 14 (2) ◽  
pp. 668
Author(s):  
José M. D. Correia ◽  
Gabriel F. Serra ◽  
Ricardo J. Alves de Sousa ◽  
António B. Pereira ◽  
Fábio A. O. Fernandes

Based on global needs for sustainable development, finding new sustainable materials that can replace oil-based ones for mass products is crucial nowadays. This paper focuses on employing an expanded cork-based composite to produce a surfboard. To evaluate the mechanical properties, uniaxial tensile and compression tests were performed on the skin and core materials, respectively. Bending tests were performed on the entire representative composite structure. Numerical models of the tests were arranged and validated from experimental results. From that, a surfboard prototype model was used to simulate some experimental conditions, permitting us to draw promising conclusions. An actual prototype was also produced. It was found that expanded cork performs very well when sandwiched between wood and polyester resin/glass fibre, being able to hold substantial loads and at the same time reduce weight and the environmental footprint of the composite by 62.8%. It can be concluded that expanded cork is an excellent candidate to replace oil-based foams in surfboard manufacturing. Despite a slight increase in weight, this sustainable material aligns with all the philosophies of surf practice worldwide.


Author(s):  
Maroua Maaroufi ◽  
Kamilia Abahri ◽  
Alexandra Bourdot ◽  
Chady El Hachem

Buildings are responsible for a large portion of the total energy consumption, and have a heavy environmental impact. Wood is one of the most used bio-based building materials, as it helps reducing the environmental footprint of the construction sector. Spruce wood is widely available in France and therefore massively used in buildings. It has interesting thermal and acoustic insulation performances and a good hydric regulation property. Spruce wood microstructure is highly heterogeneous and multiphasic, which makes it harder to apprehend. On the other hand, sorption hysteresis phenomenon is responsible for the moisture accumulation in porous building materials. It is often neglected in hygrothermal transfers modelling, which leads to incorrect water content values. The aim of this work is to investigate the influence of the sorption hysteresis phenomenon on the hydric transfers of spruce wood. The heterogeneity of the microstructure is also considered through 3D tomographic reconstructions included in the modelling.


Author(s):  
Ferhat Benmahiddine ◽  
Rafik Belarbi

Hemp concrete is one of the most used bio-based materials in the construction industry due to its hygrothermal behaviour and its low environmental footprint. This is mainly due to the complexity of the microstructure of these materials and their highly breathable nature. However, their use remains limited due to the lack of databases and guarantees regarding of the evolution of their functional properties over time. In this paper, experimental investigation has been performed to answer this problematic. The aim is to investigate the influence of accelerated aging on the properties of this material through a succession of immersion/freezing/drying cycles. Materials (aged and reference) were characterized at the same relative humidity state in order to be able to compare the results and to highlight the effect of ageing on the properties of hemp concrete. Results revealed a significant change in the microstructure of this material. As a consequence, this induced significant changes in its hygrothermal and mechanical properties. An increase of 40% in water vapour permeability and decrease of 57% in compressive strength were observed after aging (07 cycles of immersion/freezing/drying).


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Cesare Signorini ◽  
Antonella Sola ◽  
Sumit Chakraborty ◽  
Valentina Volpini

Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue is entirely dedicated to “New frontiers in cementitious and lime-based materials and composites” and gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This topical cross-disciplinary collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.


2022 ◽  
Vol 174 ◽  
pp. 113150
Author(s):  
Eva Ramirez-Llodra ◽  
Hilde Cecilie Trannum ◽  
Guri S. Andersen ◽  
Nicole J. Baeten ◽  
Steven J. Brooks ◽  
...  

2022 ◽  
pp. 27-45
Author(s):  
Anastassios Gentzoglanis

More often than not, responsible investing (RI) is associated with “patient” capital and sustainable development. Venture capital (VC), by its objectives to invest in projects with very high returns and exit quickly the market, is rightly considered as “impatient” capital, and as such, it is a less likely candidate to contribute to sustainability. This chapter advances the argument that VC can indeed contribute to sustainability, should it adopt the ESG factors into its investment criteria. This is illustrated using the case study of a Canadian VC firm, the Cycle Capital Management (CCM). The latter uses strict ESG criteria and rigorous decision-making mechanisms in the screening, evaluation, and the choice of highly lucrative and innovative projects with the aim to contribute to the Canadian economy's sustainability through its efforts to reduce the environmental footprint of its investments. Policy makers and regulators should develop policies that promote the growth and development of venture capital, should they care about sustainability and value creation.


Sign in / Sign up

Export Citation Format

Share Document