scholarly journals EFFECTS OF IRRADIATION ON THERMAL PROPERTIES OF POLYURETHANE FOAM

2021 ◽  
Author(s):  
THANH-TAM TRUONG
BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


2020 ◽  
Vol 38 (3) ◽  
pp. 235-252
Author(s):  
Zhaojun Lin ◽  
Qianqiong Zhao ◽  
Ruilan Fan ◽  
Xiaoxue Yuan ◽  
Fuli Tian

In this work, a halogen-free intumescent combining phosphorus and nitrogen, flame-retardant 2-((2-hydroxyphenyl)(phenylamino)methyl5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (HAPO) was successfully synthesized. It had been synthesized by reaction of 5,5-dimethyl-1,3, 2-dioxphosphinane 2-oxide with Schiff base. Its chemical structure was characterized in detail by Fourier transform infrared spectroscopy, 1H NMR, and 31P NMR spectrum. The flame-retardant polyurethanes were prepared with different loadings of HAPO. The thermal properties, flame retardancy and combustion behavior of the pure polyurethane foam thermosets were investigated by a series of measurements involving thermogravimetric analysis, limited oxygen index measurement, UL-94 vertical burning test, and cone calorimeter test. The results of the aforementioned tests indicated that HAPO can significantly improve the flame retardancy as well as smoke inhibition performance of polyurethane foam. Compared with the PU-Neat, the limited oxygen index of flame-retardant polyurethanes (15%) thermoset was increased from 19.5% to 23.8% and its UL-94 reached V-0 rating. In addition, the cone test results showed that the heat release rate, total heat release, rate of smoke release, and total smoke production of flame-retardant polyurethanes (10%) were decreased obvious sly. The apparent morphology of carbon residue was characterized by scanning electron microscopy, and results revealed that the modified polyurethane foam can form dense carbon layer after combustion. Thermogravimetric analysis results also indicated that the char amount of flame-retardant polyurethanes was obviously increased compared with PU-Neat. Based on the above analysis, we can draw the conclusions which in the condensed phase, phosphorus-based acids from the degradation of HAPO, this could promote the formation of continuous and dense phosphorus-rich carbon layer. In the gas phase, the flame-retardant mechanism was ascribed to the quenching effect of phosphorus-based radicals and diluting effect by non-flammable gases.


2019 ◽  
Vol 140 (2) ◽  
pp. 625-636 ◽  
Author(s):  
Gang Tang ◽  
Lin Zhou ◽  
Ping Zhang ◽  
Zhongqiang Han ◽  
Depeng Chen ◽  
...  

2012 ◽  
Vol 28 (1) ◽  
pp. 653-658 ◽  
Author(s):  
S. Gutiérrez-González ◽  
J. Gadea ◽  
A. Rodríguez ◽  
C. Junco ◽  
V. Calderón

1966 ◽  
Vol 8 (1) ◽  
pp. 36-37
Author(s):  
I. N. Anokhina ◽  
M. S. Ivankina ◽  
P. A. Savintsev

Sign in / Sign up

Export Citation Format

Share Document