scholarly journals Understanding Solar Photovoltaic System Performance: An Assessment of 75 Federal Photovoltaic Systems

2021 ◽  
Author(s):  
Andy Walker ◽  
Jal Desai
2018 ◽  
Vol 25 (s2) ◽  
pp. 176-181 ◽  
Author(s):  
Yaqi Shi ◽  
Wei Luo

Abstract The use of new energy generation technologies such as solar energy and electric propulsion technologies to form integrated power propulsion technology for ships has become one of the most concerned green technologies on ships. Based on the introduction of the principles and usage patterns of solar photovoltaic systems, the application characteristics of solar photovoltaic systems and their components in ships are analyzed. The important characteristics of the marine power grid based on solar photovoltaic systems are explored and summarized, providing a basis for future system design and application. Photovoltaic solar cells are made using semiconductor effects that convert solar radiation directly into electrical energy. Several such battery devices are packaged into photovoltaic solar cell modules, and several components are combined into a certain power photovoltaic array according to actual needs, and are matched with devices such as energy storage, measurement, and control to form a photovoltaic power generation system. This article refers to the basic principle and composition of the land-use solar photovoltaic system, and analyzes the difference between the operational mode and the land use of the large-scale ocean-going ship solar photovoltaic system. Specific analysis of large-scale ocean-going ship solar photovoltaic system complete set of technical route, for the construction of marine solar photovoltaic system to provide design ideas.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050246 ◽  
Author(s):  
B. N. Ch. V. Chakravarthi ◽  
G. V. Siva Krishna Rao

In solar photovoltaic (PV)-based DC microgrid systems, the voltage output of the classical DC–DC converter produces very less voltage as a result of poor voltage gain. Therefore, cascaded DC–DC boost converters are mandatory for boosting the voltage to match the DC microgrid voltage. However, the number of devices utilized in the DC–DC conversion stage becomes higher and leads to more losses. Thereby, it affects the system efficiency and increases the complication of the system and cost. In order to overcome this drawback, a novel double-boost DC–DC converter is proposed to meet the voltage in DC microgrid. Also, this paper discusses the detailed operation of maximum power point (MPP) tracking techniques in the novel double-boost DC–DC converter topology. The fundamental [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] characteristics of solar photovoltaic system, operational details of MPP execution and control strategies for double-boost DC/DC converter are described elaborately. The proposed converter operation and power injection into the DC microgrid are verified through the real-time PSCAD simulation and the validation is done through the experiment with hardware module which is indistinguishable with the simulation platform.


Sign in / Sign up

Export Citation Format

Share Document